MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lttri4 Structured version   Visualization version   GIF version

Theorem lttri4 10717
Description: Trichotomy law for 'less than'. (Contributed by NM, 20-Sep-2007.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
lttri4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))

Proof of Theorem lttri4
StepHypRef Expression
1 ltso 10713 . 2 < Or ℝ
2 solin 5491 . 2 (( < Or ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
31, 2mpan 688 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3o 1081   = wceq 1531  wcel 2108   class class class wbr 5057   Or wor 5466  cr 10528   < clt 10667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-pre-lttri 10603  ax-pre-lttrn 10604
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-ltxr 10672
This theorem is referenced by:  lttri4d  10773  xlemul1a  12673  xadddi  12680  mbfmulc2lem  24240  c1lip1  24586  reeff1o  25027  tanabsge  25084  logcnlem3  25219  atantan  25493  atanbnd  25496  icceuelpart  43587  goldbachth  43700
  Copyright terms: Public domain W3C validator