Proof of Theorem xmullem
Step | Hyp | Ref
| Expression |
1 | | ioran 980 |
. . . 4
⊢ (¬
(𝐴 = 0 ∨ 𝐵 = 0) ↔ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) |
2 | 1 | anbi2i 622 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
∧ (¬ 𝐴 = 0 ∧
¬ 𝐵 =
0))) |
3 | | ioran 980 |
. . . . 5
⊢ (¬
(((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ (¬ ((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ ¬ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) |
4 | | ioran 980 |
. . . . . 6
⊢ (¬
((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ↔ (¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞))) |
5 | | ioran 980 |
. . . . . 6
⊢ (¬
((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) ↔ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) |
6 | 4, 5 | anbi12i 626 |
. . . . 5
⊢ ((¬
((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ ¬ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ ((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞)))) |
7 | 3, 6 | bitri 274 |
. . . 4
⊢ (¬
(((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ ((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞)))) |
8 | | ioran 980 |
. . . . 5
⊢ (¬
(((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ (¬ ((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ ¬ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) |
9 | | ioran 980 |
. . . . . 6
⊢ (¬
((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ↔ (¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞))) |
10 | | ioran 980 |
. . . . . 6
⊢ (¬
((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) ↔ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))) |
11 | 9, 10 | anbi12i 626 |
. . . . 5
⊢ ((¬
((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ ¬ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))) |
12 | 8, 11 | bitri 274 |
. . . 4
⊢ (¬
(((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))) |
13 | 7, 12 | anbi12i 626 |
. . 3
⊢ ((¬
(((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) ↔ (((¬ (0 <
𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) |
14 | | simplll 771 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → 𝐴 ∈
ℝ*) |
15 | | elxr 12781 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
↔ (𝐴 ∈ ℝ
∨ 𝐴 = +∞ ∨
𝐴 =
-∞)) |
16 | 14, 15 | sylib 217 |
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
17 | | idd 24 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)) |
18 | | simprlr 776 |
. . . . . . . . 9
⊢ ((((¬
(0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) |
19 | 18 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) |
20 | 19 | pm2.21d 121 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ((𝐵 < 0 ∧ 𝐴 = +∞) → 𝐴 ∈ ℝ)) |
21 | 20 | expdimp 452 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 𝐵 < 0) → (𝐴 = +∞ → 𝐴 ∈ ℝ)) |
22 | | simplrr 774 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ¬ 𝐵 = 0) |
23 | 22 | pm2.21d 121 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐵 = 0 → (𝐴 = +∞ → 𝐴 ∈ ℝ))) |
24 | 23 | imp 406 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 𝐵 = 0) → (𝐴 = +∞ → 𝐴 ∈ ℝ)) |
25 | | simplll 771 |
. . . . . . . . 9
⊢ ((((¬
(0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (0 < 𝐵 ∧ 𝐴 = +∞)) |
26 | 25 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ¬ (0 < 𝐵 ∧ 𝐴 = +∞)) |
27 | 26 | pm2.21d 121 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ((0 < 𝐵 ∧ 𝐴 = +∞) → 𝐴 ∈ ℝ)) |
28 | 27 | expdimp 452 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 0 < 𝐵) → (𝐴 = +∞ → 𝐴 ∈ ℝ)) |
29 | | simpllr 772 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → 𝐵 ∈
ℝ*) |
30 | | 0xr 10953 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
31 | | xrltso 12804 |
. . . . . . . 8
⊢ < Or
ℝ* |
32 | | solin 5519 |
. . . . . . . 8
⊢ (( <
Or ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ∈
ℝ*)) → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵)) |
33 | 31, 32 | mpan 686 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ*
∧ 0 ∈ ℝ*) → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵)) |
34 | 29, 30, 33 | sylancl 585 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵)) |
35 | 21, 24, 28, 34 | mpjao3dan 1429 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐴 = +∞ → 𝐴 ∈ ℝ)) |
36 | | simpllr 772 |
. . . . . . . . 9
⊢ ((((¬
(0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) |
37 | 36 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) |
38 | 37 | pm2.21d 121 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ((𝐵 < 0 ∧ 𝐴 = -∞) → 𝐴 ∈ ℝ)) |
39 | 38 | expdimp 452 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 𝐵 < 0) → (𝐴 = -∞ → 𝐴 ∈ ℝ)) |
40 | 22 | pm2.21d 121 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐵 = 0 → (𝐴 = -∞ → 𝐴 ∈ ℝ))) |
41 | 40 | imp 406 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 𝐵 = 0) → (𝐴 = -∞ → 𝐴 ∈ ℝ)) |
42 | | simprll 775 |
. . . . . . . . 9
⊢ ((((¬
(0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (0 < 𝐵 ∧ 𝐴 = -∞)) |
43 | 42 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ¬ (0 < 𝐵 ∧ 𝐴 = -∞)) |
44 | 43 | pm2.21d 121 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ((0 < 𝐵 ∧ 𝐴 = -∞) → 𝐴 ∈ ℝ)) |
45 | 44 | expdimp 452 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 0 < 𝐵) → (𝐴 = -∞ → 𝐴 ∈ ℝ)) |
46 | 39, 41, 45, 34 | mpjao3dan 1429 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐴 = -∞ → 𝐴 ∈ ℝ)) |
47 | 17, 35, 46 | 3jaod 1426 |
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → 𝐴 ∈ ℝ)) |
48 | 16, 47 | mpd 15 |
. . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵 ∧ 𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵 ∧ 𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴 ∧ 𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → 𝐴 ∈ ℝ) |
49 | 2, 13, 48 | syl2anb 597 |
. 2
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) → 𝐴 ∈ ℝ) |
50 | 49 | anassrs 467 |
1
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐴 ∈ ℝ) |