MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmullem Structured version   Visualization version   GIF version

Theorem xmullem 13285
Description: Lemma for rexmul 13292. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmullem (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐴 ∈ ℝ)

Proof of Theorem xmullem
StepHypRef Expression
1 ioran 985 . . . 4 (¬ (𝐴 = 0 ∨ 𝐵 = 0) ↔ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
21anbi2i 623 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)))
3 ioran 985 . . . . 5 (¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ (¬ ((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ ¬ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))
4 ioran 985 . . . . . 6 (¬ ((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ↔ (¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)))
5 ioran 985 . . . . . 6 (¬ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) ↔ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞)))
64, 5anbi12i 628 . . . . 5 ((¬ ((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ ¬ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ ((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))))
73, 6bitri 275 . . . 4 (¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ ((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))))
8 ioran 985 . . . . 5 (¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ (¬ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ ¬ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))
9 ioran 985 . . . . . 6 (¬ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ↔ (¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)))
10 ioran 985 . . . . . 6 (¬ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) ↔ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))
119, 10anbi12i 628 . . . . 5 ((¬ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ ¬ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))
128, 11bitri 275 . . . 4 (¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))
137, 12anbi12i 628 . . 3 ((¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) ↔ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))))
14 simplll 774 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → 𝐴 ∈ ℝ*)
15 elxr 13137 . . . . 5 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
1614, 15sylib 218 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
17 idd 24 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ))
18 simprlr 779 . . . . . . . . 9 ((((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (𝐵 < 0 ∧ 𝐴 = +∞))
1918adantl 481 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ¬ (𝐵 < 0 ∧ 𝐴 = +∞))
2019pm2.21d 121 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ((𝐵 < 0 ∧ 𝐴 = +∞) → 𝐴 ∈ ℝ))
2120expdimp 452 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 𝐵 < 0) → (𝐴 = +∞ → 𝐴 ∈ ℝ))
22 simplrr 777 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ¬ 𝐵 = 0)
2322pm2.21d 121 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐵 = 0 → (𝐴 = +∞ → 𝐴 ∈ ℝ)))
2423imp 406 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 𝐵 = 0) → (𝐴 = +∞ → 𝐴 ∈ ℝ))
25 simplll 774 . . . . . . . . 9 ((((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (0 < 𝐵𝐴 = +∞))
2625adantl 481 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ¬ (0 < 𝐵𝐴 = +∞))
2726pm2.21d 121 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ((0 < 𝐵𝐴 = +∞) → 𝐴 ∈ ℝ))
2827expdimp 452 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 0 < 𝐵) → (𝐴 = +∞ → 𝐴 ∈ ℝ))
29 simpllr 775 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → 𝐵 ∈ ℝ*)
30 0xr 11287 . . . . . . 7 0 ∈ ℝ*
31 xrltso 13162 . . . . . . . 8 < Or ℝ*
32 solin 5593 . . . . . . . 8 (( < Or ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ∈ ℝ*)) → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵))
3331, 32mpan 690 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵))
3429, 30, 33sylancl 586 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵))
3521, 24, 28, 34mpjao3dan 1434 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐴 = +∞ → 𝐴 ∈ ℝ))
36 simpllr 775 . . . . . . . . 9 ((((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (𝐵 < 0 ∧ 𝐴 = -∞))
3736adantl 481 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ¬ (𝐵 < 0 ∧ 𝐴 = -∞))
3837pm2.21d 121 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ((𝐵 < 0 ∧ 𝐴 = -∞) → 𝐴 ∈ ℝ))
3938expdimp 452 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 𝐵 < 0) → (𝐴 = -∞ → 𝐴 ∈ ℝ))
4022pm2.21d 121 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐵 = 0 → (𝐴 = -∞ → 𝐴 ∈ ℝ)))
4140imp 406 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 𝐵 = 0) → (𝐴 = -∞ → 𝐴 ∈ ℝ))
42 simprll 778 . . . . . . . . 9 ((((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (0 < 𝐵𝐴 = -∞))
4342adantl 481 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ¬ (0 < 𝐵𝐴 = -∞))
4443pm2.21d 121 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ((0 < 𝐵𝐴 = -∞) → 𝐴 ∈ ℝ))
4544expdimp 452 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 0 < 𝐵) → (𝐴 = -∞ → 𝐴 ∈ ℝ))
4639, 41, 45, 34mpjao3dan 1434 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐴 = -∞ → 𝐴 ∈ ℝ))
4717, 35, 463jaod 1431 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → 𝐴 ∈ ℝ))
4816, 47mpd 15 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → 𝐴 ∈ ℝ)
492, 13, 48syl2anb 598 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) → 𝐴 ∈ ℝ)
5049anassrs 467 1 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109   class class class wbr 5124   Or wor 5565  cr 11133  0cc0 11134  +∞cpnf 11271  -∞cmnf 11272  *cxr 11273   < clt 11274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-addrcl 11195  ax-rnegex 11205  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279
This theorem is referenced by:  xmulcom  13287  xmulneg1  13290  xmulf  13293
  Copyright terms: Public domain W3C validator