MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmullem Structured version   Visualization version   GIF version

Theorem xmullem 12998
Description: Lemma for rexmul 13005. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmullem (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐴 ∈ ℝ)

Proof of Theorem xmullem
StepHypRef Expression
1 ioran 981 . . . 4 (¬ (𝐴 = 0 ∨ 𝐵 = 0) ↔ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
21anbi2i 623 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)))
3 ioran 981 . . . . 5 (¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ (¬ ((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ ¬ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))
4 ioran 981 . . . . . 6 (¬ ((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ↔ (¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)))
5 ioran 981 . . . . . 6 (¬ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)) ↔ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞)))
64, 5anbi12i 627 . . . . 5 ((¬ ((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ ¬ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ ((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))))
73, 6bitri 274 . . . 4 (¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ↔ ((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))))
8 ioran 981 . . . . 5 (¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ (¬ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ ¬ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))
9 ioran 981 . . . . . 6 (¬ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ↔ (¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)))
10 ioran 981 . . . . . 6 (¬ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)) ↔ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))
119, 10anbi12i 627 . . . . 5 ((¬ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ ¬ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))
128, 11bitri 274 . . . 4 (¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))) ↔ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))
137, 12anbi12i 627 . . 3 ((¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) ↔ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))))
14 simplll 772 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → 𝐴 ∈ ℝ*)
15 elxr 12852 . . . . 5 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
1614, 15sylib 217 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
17 idd 24 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ))
18 simprlr 777 . . . . . . . . 9 ((((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (𝐵 < 0 ∧ 𝐴 = +∞))
1918adantl 482 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ¬ (𝐵 < 0 ∧ 𝐴 = +∞))
2019pm2.21d 121 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ((𝐵 < 0 ∧ 𝐴 = +∞) → 𝐴 ∈ ℝ))
2120expdimp 453 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 𝐵 < 0) → (𝐴 = +∞ → 𝐴 ∈ ℝ))
22 simplrr 775 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ¬ 𝐵 = 0)
2322pm2.21d 121 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐵 = 0 → (𝐴 = +∞ → 𝐴 ∈ ℝ)))
2423imp 407 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 𝐵 = 0) → (𝐴 = +∞ → 𝐴 ∈ ℝ))
25 simplll 772 . . . . . . . . 9 ((((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (0 < 𝐵𝐴 = +∞))
2625adantl 482 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ¬ (0 < 𝐵𝐴 = +∞))
2726pm2.21d 121 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ((0 < 𝐵𝐴 = +∞) → 𝐴 ∈ ℝ))
2827expdimp 453 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 0 < 𝐵) → (𝐴 = +∞ → 𝐴 ∈ ℝ))
29 simpllr 773 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → 𝐵 ∈ ℝ*)
30 0xr 11022 . . . . . . 7 0 ∈ ℝ*
31 xrltso 12875 . . . . . . . 8 < Or ℝ*
32 solin 5528 . . . . . . . 8 (( < Or ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ∈ ℝ*)) → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵))
3331, 32mpan 687 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵))
3429, 30, 33sylancl 586 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵))
3521, 24, 28, 34mpjao3dan 1430 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐴 = +∞ → 𝐴 ∈ ℝ))
36 simpllr 773 . . . . . . . . 9 ((((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (𝐵 < 0 ∧ 𝐴 = -∞))
3736adantl 482 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ¬ (𝐵 < 0 ∧ 𝐴 = -∞))
3837pm2.21d 121 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ((𝐵 < 0 ∧ 𝐴 = -∞) → 𝐴 ∈ ℝ))
3938expdimp 453 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 𝐵 < 0) → (𝐴 = -∞ → 𝐴 ∈ ℝ))
4022pm2.21d 121 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐵 = 0 → (𝐴 = -∞ → 𝐴 ∈ ℝ)))
4140imp 407 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 𝐵 = 0) → (𝐴 = -∞ → 𝐴 ∈ ℝ))
42 simprll 776 . . . . . . . . 9 ((((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞)))) → ¬ (0 < 𝐵𝐴 = -∞))
4342adantl 482 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ¬ (0 < 𝐵𝐴 = -∞))
4443pm2.21d 121 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ((0 < 𝐵𝐴 = -∞) → 𝐴 ∈ ℝ))
4544expdimp 453 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) ∧ 0 < 𝐵) → (𝐴 = -∞ → 𝐴 ∈ ℝ))
4639, 41, 45, 34mpjao3dan 1430 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → (𝐴 = -∞ → 𝐴 ∈ ℝ))
4717, 35, 463jaod 1427 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → 𝐴 ∈ ℝ))
4816, 47mpd 15 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) ∧ (((¬ (0 < 𝐵𝐴 = +∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = -∞)) ∧ (¬ (0 < 𝐴𝐵 = +∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ((¬ (0 < 𝐵𝐴 = -∞) ∧ ¬ (𝐵 < 0 ∧ 𝐴 = +∞)) ∧ (¬ (0 < 𝐴𝐵 = -∞) ∧ ¬ (𝐴 < 0 ∧ 𝐵 = +∞))))) → 𝐴 ∈ ℝ)
492, 13, 48syl2anb 598 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ (¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) → 𝐴 ∈ ℝ)
5049anassrs 468 1 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3o 1085   = wceq 1539  wcel 2106   class class class wbr 5074   Or wor 5502  cr 10870  0cc0 10871  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-addrcl 10932  ax-rnegex 10942  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014
This theorem is referenced by:  xmulcom  13000  xmulneg1  13003  xmulf  13006
  Copyright terms: Public domain W3C validator