HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  speccl Structured version   Visualization version   GIF version

Theorem speccl 31140
Description: The spectrum of an operator is a set of complex numbers. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
speccl (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) ⊆ ℂ)

Proof of Theorem speccl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 specval 31139 . 2 (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
2 ssrab2 4077 . 2 {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} ⊆ ℂ
31, 2eqsstrdi 4036 1 (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  {crab 3433  wss 3948   I cid 5573  cres 5678  wf 6537  1-1wf1 6538  cfv 6541  (class class class)co 7406  cc 11105  chba 30160   ·op chot 30180  op chod 30181  Lambdacspc 30202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-hilex 30240
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fv 6549  df-ov 7409  df-oprab 7410  df-mpo 7411  df-map 8819  df-spec 31096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator