HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  speccl Structured version   Visualization version   GIF version

Theorem speccl 31826
Description: The spectrum of an operator is a set of complex numbers. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
speccl (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) ⊆ ℂ)

Proof of Theorem speccl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 specval 31825 . 2 (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
2 ssrab2 4055 . 2 {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} ⊆ ℂ
31, 2eqsstrdi 4003 1 (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  {crab 3415  wss 3926   I cid 5547  cres 5656  wf 6526  1-1wf1 6527  cfv 6530  (class class class)co 7403  cc 11125  chba 30846   ·op chot 30866  op chod 30867  Lambdacspc 30888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-hilex 30926
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-map 8840  df-spec 31782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator