HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  speccl Structured version   Visualization version   GIF version

Theorem speccl 29313
Description: The spectrum of an operator is a set of complex numbers. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
speccl (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) ⊆ ℂ)

Proof of Theorem speccl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 specval 29312 . 2 (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
2 ssrab2 3912 . 2 {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} ⊆ ℂ
31, 2syl6eqss 3880 1 (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  {crab 3121  wss 3798   I cid 5249  cres 5344  wf 6119  1-1wf1 6120  cfv 6123  (class class class)co 6905  cc 10250  chba 28331   ·op chot 28351  op chod 28352  Lambdacspc 28373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-hilex 28411
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-map 8124  df-spec 29269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator