HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  speccl Structured version   Visualization version   GIF version

Theorem speccl 31828
Description: The spectrum of an operator is a set of complex numbers. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
speccl (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) ⊆ ℂ)

Proof of Theorem speccl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 specval 31827 . 2 (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
2 ssrab2 4043 . 2 {𝑥 ∈ ℂ ∣ ¬ (𝑇op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} ⊆ ℂ
31, 2eqsstrdi 3991 1 (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  {crab 3405  wss 3914   I cid 5532  cres 5640  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  cc 11066  chba 30848   ·op chot 30868  op chod 30869  Lambdacspc 30890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-hilex 30928
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-spec 31784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator