![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > speccl | Structured version Visualization version GIF version |
Description: The spectrum of an operator is a set of complex numbers. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
speccl | ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | specval 29312 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) | |
2 | ssrab2 3912 | . 2 ⊢ {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} ⊆ ℂ | |
3 | 1, 2 | syl6eqss 3880 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 {crab 3121 ⊆ wss 3798 I cid 5249 ↾ cres 5344 ⟶wf 6119 –1-1→wf1 6120 ‘cfv 6123 (class class class)co 6905 ℂcc 10250 ℋchba 28331 ·op chot 28351 −op chod 28352 Lambdacspc 28373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-hilex 28411 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-map 8124 df-spec 29269 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |