MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunon Structured version   Visualization version   GIF version

Theorem iunon 8170
Description: The indexed union of a set of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iunon ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ On) → 𝑥𝐴 𝐵 ∈ On)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iunon
StepHypRef Expression
1 dfiun3g 5873 . . 3 (∀𝑥𝐴 𝐵 ∈ On → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
21adantl 482 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ On) → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
3 mptexg 7097 . . . 4 (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
4 rnexg 7751 . . . 4 ((𝑥𝐴𝐵) ∈ V → ran (𝑥𝐴𝐵) ∈ V)
53, 4syl 17 . . 3 (𝐴𝑉 → ran (𝑥𝐴𝐵) ∈ V)
6 eqid 2738 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76rnmptss 6996 . . 3 (∀𝑥𝐴 𝐵 ∈ On → ran (𝑥𝐴𝐵) ⊆ On)
8 ssonuni 7630 . . . 4 (ran (𝑥𝐴𝐵) ∈ V → (ran (𝑥𝐴𝐵) ⊆ On → ran (𝑥𝐴𝐵) ∈ On))
98imp 407 . . 3 ((ran (𝑥𝐴𝐵) ∈ V ∧ ran (𝑥𝐴𝐵) ⊆ On) → ran (𝑥𝐴𝐵) ∈ On)
105, 7, 9syl2an 596 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ On) → ran (𝑥𝐴𝐵) ∈ On)
112, 10eqeltrd 2839 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ On) → 𝑥𝐴 𝐵 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887   cuni 4839   ciun 4924  cmpt 5157  ran crn 5590  Oncon0 6266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  oacl  8365  omcl  8366  oecl  8367  rankuni2b  9611  rankval4  9625  alephon  9825  cfsmolem  10026  hsmexlem5  10186  inar1  10531
  Copyright terms: Public domain W3C validator