MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunon Structured version   Visualization version   GIF version

Theorem iunon 8262
Description: The indexed union of a set of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iunon ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ On) → 𝑥𝐴 𝐵 ∈ On)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iunon
StepHypRef Expression
1 dfiun3g 5909 . . 3 (∀𝑥𝐴 𝐵 ∈ On → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
21adantl 481 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ On) → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
3 mptexg 7157 . . . 4 (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
4 rnexg 7835 . . . 4 ((𝑥𝐴𝐵) ∈ V → ran (𝑥𝐴𝐵) ∈ V)
53, 4syl 17 . . 3 (𝐴𝑉 → ran (𝑥𝐴𝐵) ∈ V)
6 eqid 2729 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76rnmptss 7057 . . 3 (∀𝑥𝐴 𝐵 ∈ On → ran (𝑥𝐴𝐵) ⊆ On)
8 ssonuni 7716 . . . 4 (ran (𝑥𝐴𝐵) ∈ V → (ran (𝑥𝐴𝐵) ⊆ On → ran (𝑥𝐴𝐵) ∈ On))
98imp 406 . . 3 ((ran (𝑥𝐴𝐵) ∈ V ∧ ran (𝑥𝐴𝐵) ⊆ On) → ran (𝑥𝐴𝐵) ∈ On)
105, 7, 9syl2an 596 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ On) → ran (𝑥𝐴𝐵) ∈ On)
112, 10eqeltrd 2828 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ On) → 𝑥𝐴 𝐵 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  wss 3903   cuni 4858   ciun 4941  cmpt 5173  ran crn 5620  Oncon0 6307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490
This theorem is referenced by:  oacl  8453  omcl  8454  oecl  8455  rankuni2b  9749  rankval4  9763  alephon  9963  cfsmolem  10164  hsmexlem5  10324  inar1  10669  bdayiun  27829  ofoafg  43331
  Copyright terms: Public domain W3C validator