Step | Hyp | Ref
| Expression |
1 | | elex 3450 |
. 2
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) |
2 | | eqgval.x |
. . . 4
⊢ 𝑋 = (Base‘𝐺) |
3 | 2 | fvexi 6788 |
. . 3
⊢ 𝑋 ∈ V |
4 | 3 | ssex 5245 |
. 2
⊢ (𝑆 ⊆ 𝑋 → 𝑆 ∈ V) |
5 | | eqgval.r |
. . 3
⊢ 𝑅 = (𝐺 ~QG 𝑆) |
6 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → 𝑔 = 𝐺) |
7 | 6 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (Base‘𝑔) = (Base‘𝐺)) |
8 | 7, 2 | eqtr4di 2796 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (Base‘𝑔) = 𝑋) |
9 | 8 | sseq2d 3953 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → ({𝑥, 𝑦} ⊆ (Base‘𝑔) ↔ {𝑥, 𝑦} ⊆ 𝑋)) |
10 | 6 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (+g‘𝑔) = (+g‘𝐺)) |
11 | | eqgval.p |
. . . . . . . . 9
⊢ + =
(+g‘𝐺) |
12 | 10, 11 | eqtr4di 2796 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (+g‘𝑔) = + ) |
13 | 6 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (invg‘𝑔) = (invg‘𝐺)) |
14 | | eqgval.n |
. . . . . . . . . 10
⊢ 𝑁 = (invg‘𝐺) |
15 | 13, 14 | eqtr4di 2796 |
. . . . . . . . 9
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (invg‘𝑔) = 𝑁) |
16 | 15 | fveq1d 6776 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → ((invg‘𝑔)‘𝑥) = (𝑁‘𝑥)) |
17 | | eqidd 2739 |
. . . . . . . 8
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → 𝑦 = 𝑦) |
18 | 12, 16, 17 | oveq123d 7296 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (((invg‘𝑔)‘𝑥)(+g‘𝑔)𝑦) = ((𝑁‘𝑥) + 𝑦)) |
19 | | simpr 485 |
. . . . . . 7
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) |
20 | 18, 19 | eleq12d 2833 |
. . . . . 6
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → ((((invg‘𝑔)‘𝑥)(+g‘𝑔)𝑦) ∈ 𝑠 ↔ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)) |
21 | 9, 20 | anbi12d 631 |
. . . . 5
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → (({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg‘𝑔)‘𝑥)(+g‘𝑔)𝑦) ∈ 𝑠) ↔ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆))) |
22 | 21 | opabbidv 5140 |
. . . 4
⊢ ((𝑔 = 𝐺 ∧ 𝑠 = 𝑆) → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg‘𝑔)‘𝑥)(+g‘𝑔)𝑦) ∈ 𝑠)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}) |
23 | | df-eqg 18754 |
. . . 4
⊢
~QG = (𝑔
∈ V, 𝑠 ∈ V
↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg‘𝑔)‘𝑥)(+g‘𝑔)𝑦) ∈ 𝑠)}) |
24 | 3, 3 | xpex 7603 |
. . . . 5
⊢ (𝑋 × 𝑋) ∈ V |
25 | | simpl 483 |
. . . . . . . 8
⊢ (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆) → {𝑥, 𝑦} ⊆ 𝑋) |
26 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
27 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
28 | 26, 27 | prss 4753 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ↔ {𝑥, 𝑦} ⊆ 𝑋) |
29 | 25, 28 | sylibr 233 |
. . . . . . 7
⊢ (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
30 | 29 | ssopab2i 5463 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)} |
31 | | df-xp 5595 |
. . . . . 6
⊢ (𝑋 × 𝑋) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)} |
32 | 30, 31 | sseqtrri 3958 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)} ⊆ (𝑋 × 𝑋) |
33 | 24, 32 | ssexi 5246 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)} ∈ V |
34 | 22, 23, 33 | ovmpoa 7428 |
. . 3
⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝐺 ~QG 𝑆) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}) |
35 | 5, 34 | eqtrid 2790 |
. 2
⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V) → 𝑅 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}) |
36 | 1, 4, 35 | syl2an 596 |
1
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → 𝑅 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}) |