MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgfval Structured version   Visualization version   GIF version

Theorem eqgfval 18328
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
eqgval.x 𝑋 = (Base‘𝐺)
eqgval.n 𝑁 = (invg𝐺)
eqgval.p + = (+g𝐺)
eqgval.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqgfval ((𝐺𝑉𝑆𝑋) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem eqgfval
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3512 . 2 (𝐺𝑉𝐺 ∈ V)
2 eqgval.x . . . 4 𝑋 = (Base‘𝐺)
32fvexi 6684 . . 3 𝑋 ∈ V
43ssex 5225 . 2 (𝑆𝑋𝑆 ∈ V)
5 eqgval.r . . 3 𝑅 = (𝐺 ~QG 𝑆)
6 simpl 485 . . . . . . . . 9 ((𝑔 = 𝐺𝑠 = 𝑆) → 𝑔 = 𝐺)
76fveq2d 6674 . . . . . . . 8 ((𝑔 = 𝐺𝑠 = 𝑆) → (Base‘𝑔) = (Base‘𝐺))
87, 2syl6eqr 2874 . . . . . . 7 ((𝑔 = 𝐺𝑠 = 𝑆) → (Base‘𝑔) = 𝑋)
98sseq2d 3999 . . . . . 6 ((𝑔 = 𝐺𝑠 = 𝑆) → ({𝑥, 𝑦} ⊆ (Base‘𝑔) ↔ {𝑥, 𝑦} ⊆ 𝑋))
106fveq2d 6674 . . . . . . . . 9 ((𝑔 = 𝐺𝑠 = 𝑆) → (+g𝑔) = (+g𝐺))
11 eqgval.p . . . . . . . . 9 + = (+g𝐺)
1210, 11syl6eqr 2874 . . . . . . . 8 ((𝑔 = 𝐺𝑠 = 𝑆) → (+g𝑔) = + )
136fveq2d 6674 . . . . . . . . . 10 ((𝑔 = 𝐺𝑠 = 𝑆) → (invg𝑔) = (invg𝐺))
14 eqgval.n . . . . . . . . . 10 𝑁 = (invg𝐺)
1513, 14syl6eqr 2874 . . . . . . . . 9 ((𝑔 = 𝐺𝑠 = 𝑆) → (invg𝑔) = 𝑁)
1615fveq1d 6672 . . . . . . . 8 ((𝑔 = 𝐺𝑠 = 𝑆) → ((invg𝑔)‘𝑥) = (𝑁𝑥))
17 eqidd 2822 . . . . . . . 8 ((𝑔 = 𝐺𝑠 = 𝑆) → 𝑦 = 𝑦)
1812, 16, 17oveq123d 7177 . . . . . . 7 ((𝑔 = 𝐺𝑠 = 𝑆) → (((invg𝑔)‘𝑥)(+g𝑔)𝑦) = ((𝑁𝑥) + 𝑦))
19 simpr 487 . . . . . . 7 ((𝑔 = 𝐺𝑠 = 𝑆) → 𝑠 = 𝑆)
2018, 19eleq12d 2907 . . . . . 6 ((𝑔 = 𝐺𝑠 = 𝑆) → ((((invg𝑔)‘𝑥)(+g𝑔)𝑦) ∈ 𝑠 ↔ ((𝑁𝑥) + 𝑦) ∈ 𝑆))
219, 20anbi12d 632 . . . . 5 ((𝑔 = 𝐺𝑠 = 𝑆) → (({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg𝑔)‘𝑥)(+g𝑔)𝑦) ∈ 𝑠) ↔ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)))
2221opabbidv 5132 . . . 4 ((𝑔 = 𝐺𝑠 = 𝑆) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg𝑔)‘𝑥)(+g𝑔)𝑦) ∈ 𝑠)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
23 df-eqg 18278 . . . 4 ~QG = (𝑔 ∈ V, 𝑠 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑔) ∧ (((invg𝑔)‘𝑥)(+g𝑔)𝑦) ∈ 𝑠)})
243, 3xpex 7476 . . . . 5 (𝑋 × 𝑋) ∈ V
25 simpl 485 . . . . . . . 8 (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆) → {𝑥, 𝑦} ⊆ 𝑋)
26 vex 3497 . . . . . . . . 9 𝑥 ∈ V
27 vex 3497 . . . . . . . . 9 𝑦 ∈ V
2826, 27prss 4753 . . . . . . . 8 ((𝑥𝑋𝑦𝑋) ↔ {𝑥, 𝑦} ⊆ 𝑋)
2925, 28sylibr 236 . . . . . . 7 (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆) → (𝑥𝑋𝑦𝑋))
3029ssopab2i 5437 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦𝑋)}
31 df-xp 5561 . . . . . 6 (𝑋 × 𝑋) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦𝑋)}
3230, 31sseqtrri 4004 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} ⊆ (𝑋 × 𝑋)
3324, 32ssexi 5226 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} ∈ V
3422, 23, 33ovmpoa 7305 . . 3 ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (𝐺 ~QG 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
355, 34syl5eq 2868 . 2 ((𝐺 ∈ V ∧ 𝑆 ∈ V) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
361, 4, 35syl2an 597 1 ((𝐺𝑉𝑆𝑋) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  wss 3936  {cpr 4569  {copab 5128   × cxp 5553  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  invgcminusg 18104   ~QG cqg 18275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-eqg 18278
This theorem is referenced by:  eqgval  18329
  Copyright terms: Public domain W3C validator