Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicval Structured version   Visualization version   GIF version

Theorem dicval 39117
Description: The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicval (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
Distinct variable groups:   𝑓,𝑔,𝑠,𝐾   𝑇,𝑔   𝑓,𝑊,𝑔,𝑠   𝑓,𝐸,𝑠   𝑃,𝑓   𝑄,𝑓,𝑔,𝑠   𝑇,𝑓
Allowed substitution hints:   𝐴(𝑓,𝑔,𝑠)   𝑃(𝑔,𝑠)   𝑇(𝑠)   𝐸(𝑔)   𝐻(𝑓,𝑔,𝑠)   𝐼(𝑓,𝑔,𝑠)   (𝑓,𝑔,𝑠)   𝑉(𝑓,𝑔,𝑠)

Proof of Theorem dicval
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . . 5 = (le‘𝐾)
2 dicval.a . . . . 5 𝐴 = (Atoms‘𝐾)
3 dicval.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dicval.p . . . . 5 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 dicval.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 dicval.i . . . . 5 𝐼 = ((DIsoC‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dicfval 39116 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}))
98adantr 480 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐼 = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}))
109fveq1d 6758 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = ((𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)})‘𝑄))
11 simpr 484 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
12 breq1 5073 . . . . . 6 (𝑟 = 𝑄 → (𝑟 𝑊𝑄 𝑊))
1312notbid 317 . . . . 5 (𝑟 = 𝑄 → (¬ 𝑟 𝑊 ↔ ¬ 𝑄 𝑊))
1413elrab 3617 . . . 4 (𝑄 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↔ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
1511, 14sylibr 233 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑄 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊})
16 eqeq2 2750 . . . . . . . . 9 (𝑞 = 𝑄 → ((𝑔𝑃) = 𝑞 ↔ (𝑔𝑃) = 𝑄))
1716riotabidv 7214 . . . . . . . 8 (𝑞 = 𝑄 → (𝑔𝑇 (𝑔𝑃) = 𝑞) = (𝑔𝑇 (𝑔𝑃) = 𝑄))
1817fveq2d 6760 . . . . . . 7 (𝑞 = 𝑄 → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
1918eqeq2d 2749 . . . . . 6 (𝑞 = 𝑄 → (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ↔ 𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
2019anbi1d 629 . . . . 5 (𝑞 = 𝑄 → ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸) ↔ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)))
2120opabbidv 5136 . . . 4 (𝑞 = 𝑄 → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)} = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
22 eqid 2738 . . . 4 (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}) = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)})
236fvexi 6770 . . . . . . . . . 10 𝐸 ∈ V
2423uniex 7572 . . . . . . . . 9 𝐸 ∈ V
2524rnex 7733 . . . . . . . 8 ran 𝐸 ∈ V
2625uniex 7572 . . . . . . 7 ran 𝐸 ∈ V
2726pwex 5298 . . . . . 6 𝒫 ran 𝐸 ∈ V
2827, 23xpex 7581 . . . . 5 (𝒫 ran 𝐸 × 𝐸) ∈ V
29 simpl 482 . . . . . . . . 9 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → 𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
30 fvssunirn 6785 . . . . . . . . . . 11 (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ⊆ ran 𝑠
31 elssuni 4868 . . . . . . . . . . . . 13 (𝑠𝐸𝑠 𝐸)
3231adantl 481 . . . . . . . . . . . 12 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → 𝑠 𝐸)
33 rnss 5837 . . . . . . . . . . . 12 (𝑠 𝐸 → ran 𝑠 ⊆ ran 𝐸)
34 uniss 4844 . . . . . . . . . . . 12 (ran 𝑠 ⊆ ran 𝐸 ran 𝑠 ran 𝐸)
3532, 33, 343syl 18 . . . . . . . . . . 11 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → ran 𝑠 ran 𝐸)
3630, 35sstrid 3928 . . . . . . . . . 10 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ⊆ ran 𝐸)
3726elpw2 5264 . . . . . . . . . 10 ((𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∈ 𝒫 ran 𝐸 ↔ (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ⊆ ran 𝐸)
3836, 37sylibr 233 . . . . . . . . 9 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∈ 𝒫 ran 𝐸)
3929, 38eqeltrd 2839 . . . . . . . 8 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → 𝑓 ∈ 𝒫 ran 𝐸)
40 simpr 484 . . . . . . . 8 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → 𝑠𝐸)
4139, 40jca 511 . . . . . . 7 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → (𝑓 ∈ 𝒫 ran 𝐸𝑠𝐸))
4241ssopab2i 5456 . . . . . 6 {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)} ⊆ {⟨𝑓, 𝑠⟩ ∣ (𝑓 ∈ 𝒫 ran 𝐸𝑠𝐸)}
43 df-xp 5586 . . . . . 6 (𝒫 ran 𝐸 × 𝐸) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 ∈ 𝒫 ran 𝐸𝑠𝐸)}
4442, 43sseqtrri 3954 . . . . 5 {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)} ⊆ (𝒫 ran 𝐸 × 𝐸)
4528, 44ssexi 5241 . . . 4 {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)} ∈ V
4621, 22, 45fvmpt 6857 . . 3 (𝑄 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} → ((𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)})‘𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
4715, 46syl 17 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)})‘𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
4810, 47eqtrd 2778 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  wss 3883  𝒫 cpw 4530   cuni 4836   class class class wbr 5070  {copab 5132  cmpt 5153   × cxp 5578  ran crn 5581  cfv 6418  crio 7211  lecple 16895  occoc 16896  Atomscatm 37204  LHypclh 37925  LTrncltrn 38042  TEndoctendo 38693  DIsoCcdic 39113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-dic 39114
This theorem is referenced by:  dicopelval  39118  dicelvalN  39119  dicval2  39120  dicfnN  39124  dicvalrelN  39126  dicssdvh  39127  dicelval1sta  39128  dihpN  39277
  Copyright terms: Public domain W3C validator