Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicval Structured version   Visualization version   GIF version

Theorem dicval 41155
Description: The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicval (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
Distinct variable groups:   𝑓,𝑔,𝑠,𝐾   𝑇,𝑔   𝑓,𝑊,𝑔,𝑠   𝑓,𝐸,𝑠   𝑃,𝑓   𝑄,𝑓,𝑔,𝑠   𝑇,𝑓
Allowed substitution hints:   𝐴(𝑓,𝑔,𝑠)   𝑃(𝑔,𝑠)   𝑇(𝑠)   𝐸(𝑔)   𝐻(𝑓,𝑔,𝑠)   𝐼(𝑓,𝑔,𝑠)   (𝑓,𝑔,𝑠)   𝑉(𝑓,𝑔,𝑠)

Proof of Theorem dicval
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . . 5 = (le‘𝐾)
2 dicval.a . . . . 5 𝐴 = (Atoms‘𝐾)
3 dicval.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dicval.p . . . . 5 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 dicval.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 dicval.i . . . . 5 𝐼 = ((DIsoC‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dicfval 41154 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}))
98adantr 480 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐼 = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}))
109fveq1d 6828 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = ((𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)})‘𝑄))
11 simpr 484 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
12 breq1 5098 . . . . . 6 (𝑟 = 𝑄 → (𝑟 𝑊𝑄 𝑊))
1312notbid 318 . . . . 5 (𝑟 = 𝑄 → (¬ 𝑟 𝑊 ↔ ¬ 𝑄 𝑊))
1413elrab 3650 . . . 4 (𝑄 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↔ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
1511, 14sylibr 234 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑄 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊})
16 eqeq2 2741 . . . . . . . . 9 (𝑞 = 𝑄 → ((𝑔𝑃) = 𝑞 ↔ (𝑔𝑃) = 𝑄))
1716riotabidv 7312 . . . . . . . 8 (𝑞 = 𝑄 → (𝑔𝑇 (𝑔𝑃) = 𝑞) = (𝑔𝑇 (𝑔𝑃) = 𝑄))
1817fveq2d 6830 . . . . . . 7 (𝑞 = 𝑄 → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
1918eqeq2d 2740 . . . . . 6 (𝑞 = 𝑄 → (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ↔ 𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
2019anbi1d 631 . . . . 5 (𝑞 = 𝑄 → ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸) ↔ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)))
2120opabbidv 5161 . . . 4 (𝑞 = 𝑄 → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)} = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
22 eqid 2729 . . . 4 (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}) = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)})
236fvexi 6840 . . . . . . . . . 10 𝐸 ∈ V
2423uniex 7681 . . . . . . . . 9 𝐸 ∈ V
2524rnex 7850 . . . . . . . 8 ran 𝐸 ∈ V
2625uniex 7681 . . . . . . 7 ran 𝐸 ∈ V
2726pwex 5322 . . . . . 6 𝒫 ran 𝐸 ∈ V
2827, 23xpex 7693 . . . . 5 (𝒫 ran 𝐸 × 𝐸) ∈ V
29 simpl 482 . . . . . . . . 9 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → 𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
30 fvssunirn 6857 . . . . . . . . . . 11 (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ⊆ ran 𝑠
31 elssuni 4891 . . . . . . . . . . . . 13 (𝑠𝐸𝑠 𝐸)
3231adantl 481 . . . . . . . . . . . 12 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → 𝑠 𝐸)
33 rnss 5885 . . . . . . . . . . . 12 (𝑠 𝐸 → ran 𝑠 ⊆ ran 𝐸)
34 uniss 4869 . . . . . . . . . . . 12 (ran 𝑠 ⊆ ran 𝐸 ran 𝑠 ran 𝐸)
3532, 33, 343syl 18 . . . . . . . . . . 11 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → ran 𝑠 ran 𝐸)
3630, 35sstrid 3949 . . . . . . . . . 10 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ⊆ ran 𝐸)
3726elpw2 5276 . . . . . . . . . 10 ((𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∈ 𝒫 ran 𝐸 ↔ (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ⊆ ran 𝐸)
3836, 37sylibr 234 . . . . . . . . 9 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∈ 𝒫 ran 𝐸)
3929, 38eqeltrd 2828 . . . . . . . 8 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → 𝑓 ∈ 𝒫 ran 𝐸)
40 simpr 484 . . . . . . . 8 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → 𝑠𝐸)
4139, 40jca 511 . . . . . . 7 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → (𝑓 ∈ 𝒫 ran 𝐸𝑠𝐸))
4241ssopab2i 5497 . . . . . 6 {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)} ⊆ {⟨𝑓, 𝑠⟩ ∣ (𝑓 ∈ 𝒫 ran 𝐸𝑠𝐸)}
43 df-xp 5629 . . . . . 6 (𝒫 ran 𝐸 × 𝐸) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 ∈ 𝒫 ran 𝐸𝑠𝐸)}
4442, 43sseqtrri 3987 . . . . 5 {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)} ⊆ (𝒫 ran 𝐸 × 𝐸)
4528, 44ssexi 5264 . . . 4 {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)} ∈ V
4621, 22, 45fvmpt 6934 . . 3 (𝑄 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} → ((𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)})‘𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
4715, 46syl 17 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)})‘𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
4810, 47eqtrd 2764 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  wss 3905  𝒫 cpw 4553   cuni 4861   class class class wbr 5095  {copab 5157  cmpt 5176   × cxp 5621  ran crn 5624  cfv 6486  crio 7309  lecple 17186  occoc 17187  Atomscatm 39241  LHypclh 39963  LTrncltrn 40080  TEndoctendo 40731  DIsoCcdic 41151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-dic 41152
This theorem is referenced by:  dicopelval  41156  dicelvalN  41157  dicval2  41158  dicfnN  41162  dicvalrelN  41164  dicssdvh  41165  dicelval1sta  41166  dihpN  41315
  Copyright terms: Public domain W3C validator