Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicval Structured version   Visualization version   GIF version

Theorem dicval 39639
Description: The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
dicval.l ≀ = (leβ€˜πΎ)
dicval.a 𝐴 = (Atomsβ€˜πΎ)
dicval.h 𝐻 = (LHypβ€˜πΎ)
dicval.p 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
dicval.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dicval.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
dicval.i 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dicval (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)})
Distinct variable groups:   𝑓,𝑔,𝑠,𝐾   𝑇,𝑔   𝑓,π‘Š,𝑔,𝑠   𝑓,𝐸,𝑠   𝑃,𝑓   𝑄,𝑓,𝑔,𝑠   𝑇,𝑓
Allowed substitution hints:   𝐴(𝑓,𝑔,𝑠)   𝑃(𝑔,𝑠)   𝑇(𝑠)   𝐸(𝑔)   𝐻(𝑓,𝑔,𝑠)   𝐼(𝑓,𝑔,𝑠)   ≀ (𝑓,𝑔,𝑠)   𝑉(𝑓,𝑔,𝑠)

Proof of Theorem dicval
Dummy variables π‘Ÿ π‘ž are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . . 5 ≀ = (leβ€˜πΎ)
2 dicval.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
3 dicval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
4 dicval.p . . . . 5 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
5 dicval.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
6 dicval.e . . . . 5 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
7 dicval.i . . . . 5 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
81, 2, 3, 4, 5, 6, 7dicfval 39638 . . . 4 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 = (π‘ž ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ π‘Š} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = π‘ž)) ∧ 𝑠 ∈ 𝐸)}))
98adantr 481 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐼 = (π‘ž ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ π‘Š} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = π‘ž)) ∧ 𝑠 ∈ 𝐸)}))
109fveq1d 6844 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = ((π‘ž ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ π‘Š} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = π‘ž)) ∧ 𝑠 ∈ 𝐸)})β€˜π‘„))
11 simpr 485 . . . 4 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
12 breq1 5108 . . . . . 6 (π‘Ÿ = 𝑄 β†’ (π‘Ÿ ≀ π‘Š ↔ 𝑄 ≀ π‘Š))
1312notbid 317 . . . . 5 (π‘Ÿ = 𝑄 β†’ (Β¬ π‘Ÿ ≀ π‘Š ↔ Β¬ 𝑄 ≀ π‘Š))
1413elrab 3645 . . . 4 (𝑄 ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ π‘Š} ↔ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
1511, 14sylibr 233 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝑄 ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ π‘Š})
16 eqeq2 2748 . . . . . . . . 9 (π‘ž = 𝑄 β†’ ((π‘”β€˜π‘ƒ) = π‘ž ↔ (π‘”β€˜π‘ƒ) = 𝑄))
1716riotabidv 7315 . . . . . . . 8 (π‘ž = 𝑄 β†’ (℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = π‘ž) = (℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄))
1817fveq2d 6846 . . . . . . 7 (π‘ž = 𝑄 β†’ (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = π‘ž)) = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)))
1918eqeq2d 2747 . . . . . 6 (π‘ž = 𝑄 β†’ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = π‘ž)) ↔ 𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄))))
2019anbi1d 630 . . . . 5 (π‘ž = 𝑄 β†’ ((𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = π‘ž)) ∧ 𝑠 ∈ 𝐸) ↔ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)))
2120opabbidv 5171 . . . 4 (π‘ž = 𝑄 β†’ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = π‘ž)) ∧ 𝑠 ∈ 𝐸)} = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)})
22 eqid 2736 . . . 4 (π‘ž ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ π‘Š} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = π‘ž)) ∧ 𝑠 ∈ 𝐸)}) = (π‘ž ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ π‘Š} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = π‘ž)) ∧ 𝑠 ∈ 𝐸)})
236fvexi 6856 . . . . . . . . . 10 𝐸 ∈ V
2423uniex 7678 . . . . . . . . 9 βˆͺ 𝐸 ∈ V
2524rnex 7849 . . . . . . . 8 ran βˆͺ 𝐸 ∈ V
2625uniex 7678 . . . . . . 7 βˆͺ ran βˆͺ 𝐸 ∈ V
2726pwex 5335 . . . . . 6 𝒫 βˆͺ ran βˆͺ 𝐸 ∈ V
2827, 23xpex 7687 . . . . 5 (𝒫 βˆͺ ran βˆͺ 𝐸 Γ— 𝐸) ∈ V
29 simpl 483 . . . . . . . . 9 ((𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸) β†’ 𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)))
30 fvssunirn 6875 . . . . . . . . . . 11 (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) βŠ† βˆͺ ran 𝑠
31 elssuni 4898 . . . . . . . . . . . . 13 (𝑠 ∈ 𝐸 β†’ 𝑠 βŠ† βˆͺ 𝐸)
3231adantl 482 . . . . . . . . . . . 12 ((𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸) β†’ 𝑠 βŠ† βˆͺ 𝐸)
33 rnss 5894 . . . . . . . . . . . 12 (𝑠 βŠ† βˆͺ 𝐸 β†’ ran 𝑠 βŠ† ran βˆͺ 𝐸)
34 uniss 4873 . . . . . . . . . . . 12 (ran 𝑠 βŠ† ran βˆͺ 𝐸 β†’ βˆͺ ran 𝑠 βŠ† βˆͺ ran βˆͺ 𝐸)
3532, 33, 343syl 18 . . . . . . . . . . 11 ((𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸) β†’ βˆͺ ran 𝑠 βŠ† βˆͺ ran βˆͺ 𝐸)
3630, 35sstrid 3955 . . . . . . . . . 10 ((𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸) β†’ (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) βŠ† βˆͺ ran βˆͺ 𝐸)
3726elpw2 5302 . . . . . . . . . 10 ((π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∈ 𝒫 βˆͺ ran βˆͺ 𝐸 ↔ (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) βŠ† βˆͺ ran βˆͺ 𝐸)
3836, 37sylibr 233 . . . . . . . . 9 ((𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸) β†’ (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∈ 𝒫 βˆͺ ran βˆͺ 𝐸)
3929, 38eqeltrd 2837 . . . . . . . 8 ((𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸) β†’ 𝑓 ∈ 𝒫 βˆͺ ran βˆͺ 𝐸)
40 simpr 485 . . . . . . . 8 ((𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸) β†’ 𝑠 ∈ 𝐸)
4139, 40jca 512 . . . . . . 7 ((𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸) β†’ (𝑓 ∈ 𝒫 βˆͺ ran βˆͺ 𝐸 ∧ 𝑠 ∈ 𝐸))
4241ssopab2i 5507 . . . . . 6 {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)} βŠ† {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 ∈ 𝒫 βˆͺ ran βˆͺ 𝐸 ∧ 𝑠 ∈ 𝐸)}
43 df-xp 5639 . . . . . 6 (𝒫 βˆͺ ran βˆͺ 𝐸 Γ— 𝐸) = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 ∈ 𝒫 βˆͺ ran βˆͺ 𝐸 ∧ 𝑠 ∈ 𝐸)}
4442, 43sseqtrri 3981 . . . . 5 {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)} βŠ† (𝒫 βˆͺ ran βˆͺ 𝐸 Γ— 𝐸)
4528, 44ssexi 5279 . . . 4 {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)} ∈ V
4621, 22, 45fvmpt 6948 . . 3 (𝑄 ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ π‘Š} β†’ ((π‘ž ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ π‘Š} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = π‘ž)) ∧ 𝑠 ∈ 𝐸)})β€˜π‘„) = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)})
4715, 46syl 17 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((π‘ž ∈ {π‘Ÿ ∈ 𝐴 ∣ Β¬ π‘Ÿ ≀ π‘Š} ↦ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = π‘ž)) ∧ 𝑠 ∈ 𝐸)})β€˜π‘„) = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)})
4810, 47eqtrd 2776 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3407   βŠ† wss 3910  π’« cpw 4560  βˆͺ cuni 4865   class class class wbr 5105  {copab 5167   ↦ cmpt 5188   Γ— cxp 5631  ran crn 5634  β€˜cfv 6496  β„©crio 7312  lecple 17140  occoc 17141  Atomscatm 37725  LHypclh 38447  LTrncltrn 38564  TEndoctendo 39215  DIsoCcdic 39635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-dic 39636
This theorem is referenced by:  dicopelval  39640  dicelvalN  39641  dicval2  39642  dicfnN  39646  dicvalrelN  39648  dicssdvh  39649  dicelval1sta  39650  dihpN  39799
  Copyright terms: Public domain W3C validator