| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttukeylem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for ttukey 10558. A property of finite character is closed under subsets. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| ttukeylem.1 | ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) |
| ttukeylem.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| ttukeylem.3 | ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) |
| Ref | Expression |
|---|---|
| ttukeylem2 | ⊢ ((𝜑 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶)) → 𝐷 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → 𝐷 ⊆ 𝐶) | |
| 2 | 1 | sspwd 4613 | . . . . 5 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → 𝒫 𝐷 ⊆ 𝒫 𝐶) |
| 3 | ssrin 4242 | . . . . 5 ⊢ (𝒫 𝐷 ⊆ 𝒫 𝐶 → (𝒫 𝐷 ∩ Fin) ⊆ (𝒫 𝐶 ∩ Fin)) | |
| 4 | sstr2 3990 | . . . . 5 ⊢ ((𝒫 𝐷 ∩ Fin) ⊆ (𝒫 𝐶 ∩ Fin) → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) | |
| 5 | 2, 3, 4 | 3syl 18 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) |
| 6 | ttukeylem.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) | |
| 7 | ttukeylem.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 8 | ttukeylem.3 | . . . . . 6 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) | |
| 9 | 6, 7, 8 | ttukeylem1 10549 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → (𝐶 ∈ 𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)) |
| 11 | 6, 7, 8 | ttukeylem1 10549 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ 𝐴 ↔ (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → (𝐷 ∈ 𝐴 ↔ (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) |
| 13 | 5, 10, 12 | 3imtr4d 294 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → (𝐶 ∈ 𝐴 → 𝐷 ∈ 𝐴)) |
| 14 | 13 | impancom 451 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐷 ⊆ 𝐶 → 𝐷 ∈ 𝐴)) |
| 15 | 14 | impr 454 | 1 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶)) → 𝐷 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2108 ∖ cdif 3948 ∩ cin 3950 ⊆ wss 3951 𝒫 cpw 4600 ∪ cuni 4907 –1-1-onto→wf1o 6560 ‘cfv 6561 Fincfn 8985 cardccrd 9975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1o 8506 df-en 8986 df-dom 8987 df-fin 8989 |
| This theorem is referenced by: ttukeylem6 10554 ttukeylem7 10555 |
| Copyright terms: Public domain | W3C validator |