| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttukeylem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for ttukey 10406. A property of finite character is closed under subsets. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| ttukeylem.1 | ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) |
| ttukeylem.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| ttukeylem.3 | ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) |
| Ref | Expression |
|---|---|
| ttukeylem2 | ⊢ ((𝜑 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶)) → 𝐷 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → 𝐷 ⊆ 𝐶) | |
| 2 | 1 | sspwd 4563 | . . . . 5 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → 𝒫 𝐷 ⊆ 𝒫 𝐶) |
| 3 | ssrin 4192 | . . . . 5 ⊢ (𝒫 𝐷 ⊆ 𝒫 𝐶 → (𝒫 𝐷 ∩ Fin) ⊆ (𝒫 𝐶 ∩ Fin)) | |
| 4 | sstr2 3941 | . . . . 5 ⊢ ((𝒫 𝐷 ∩ Fin) ⊆ (𝒫 𝐶 ∩ Fin) → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) | |
| 5 | 2, 3, 4 | 3syl 18 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) |
| 6 | ttukeylem.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) | |
| 7 | ttukeylem.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 8 | ttukeylem.3 | . . . . . 6 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) | |
| 9 | 6, 7, 8 | ttukeylem1 10397 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → (𝐶 ∈ 𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)) |
| 11 | 6, 7, 8 | ttukeylem1 10397 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ 𝐴 ↔ (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → (𝐷 ∈ 𝐴 ↔ (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) |
| 13 | 5, 10, 12 | 3imtr4d 294 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → (𝐶 ∈ 𝐴 → 𝐷 ∈ 𝐴)) |
| 14 | 13 | impancom 451 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐷 ⊆ 𝐶 → 𝐷 ∈ 𝐴)) |
| 15 | 14 | impr 454 | 1 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶)) → 𝐷 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∈ wcel 2111 ∖ cdif 3899 ∩ cin 3901 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 –1-1-onto→wf1o 6480 ‘cfv 6481 Fincfn 8869 cardccrd 9825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-en 8870 df-dom 8871 df-fin 8873 |
| This theorem is referenced by: ttukeylem6 10402 ttukeylem7 10403 |
| Copyright terms: Public domain | W3C validator |