Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ttukeylem2 | Structured version Visualization version GIF version |
Description: Lemma for ttukey 10132. A property of finite character is closed under subsets. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
ttukeylem.1 | ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) |
ttukeylem.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
ttukeylem.3 | ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) |
Ref | Expression |
---|---|
ttukeylem2 | ⊢ ((𝜑 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶)) → 𝐷 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → 𝐷 ⊆ 𝐶) | |
2 | 1 | sspwd 4528 | . . . . 5 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → 𝒫 𝐷 ⊆ 𝒫 𝐶) |
3 | ssrin 4148 | . . . . 5 ⊢ (𝒫 𝐷 ⊆ 𝒫 𝐶 → (𝒫 𝐷 ∩ Fin) ⊆ (𝒫 𝐶 ∩ Fin)) | |
4 | sstr2 3908 | . . . . 5 ⊢ ((𝒫 𝐷 ∩ Fin) ⊆ (𝒫 𝐶 ∩ Fin) → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) | |
5 | 2, 3, 4 | 3syl 18 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) |
6 | ttukeylem.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) | |
7 | ttukeylem.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
8 | ttukeylem.3 | . . . . . 6 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) | |
9 | 6, 7, 8 | ttukeylem1 10123 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)) |
10 | 9 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → (𝐶 ∈ 𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴)) |
11 | 6, 7, 8 | ttukeylem1 10123 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ 𝐴 ↔ (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) |
12 | 11 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → (𝐷 ∈ 𝐴 ↔ (𝒫 𝐷 ∩ Fin) ⊆ 𝐴)) |
13 | 5, 10, 12 | 3imtr4d 297 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐶) → (𝐶 ∈ 𝐴 → 𝐷 ∈ 𝐴)) |
14 | 13 | impancom 455 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐷 ⊆ 𝐶 → 𝐷 ∈ 𝐴)) |
15 | 14 | impr 458 | 1 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶)) → 𝐷 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1541 ∈ wcel 2110 ∖ cdif 3863 ∩ cin 3865 ⊆ wss 3866 𝒫 cpw 4513 ∪ cuni 4819 –1-1-onto→wf1o 6379 ‘cfv 6380 Fincfn 8626 cardccrd 9551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-om 7645 df-1o 8202 df-en 8627 df-dom 8628 df-fin 8630 |
This theorem is referenced by: ttukeylem6 10128 ttukeylem7 10129 |
Copyright terms: Public domain | W3C validator |