MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem2 Structured version   Visualization version   GIF version

Theorem ttukeylem2 10463
Description: Lemma for ttukey 10471. A property of finite character is closed under subsets. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
Assertion
Ref Expression
ttukeylem2 ((𝜑 ∧ (𝐶𝐴𝐷𝐶)) → 𝐷𝐴)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem2
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑𝐷𝐶) → 𝐷𝐶)
21sspwd 4576 . . . . 5 ((𝜑𝐷𝐶) → 𝒫 𝐷 ⊆ 𝒫 𝐶)
3 ssrin 4205 . . . . 5 (𝒫 𝐷 ⊆ 𝒫 𝐶 → (𝒫 𝐷 ∩ Fin) ⊆ (𝒫 𝐶 ∩ Fin))
4 sstr2 3953 . . . . 5 ((𝒫 𝐷 ∩ Fin) ⊆ (𝒫 𝐶 ∩ Fin) → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐷 ∩ Fin) ⊆ 𝐴))
52, 3, 43syl 18 . . . 4 ((𝜑𝐷𝐶) → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐷 ∩ Fin) ⊆ 𝐴))
6 ttukeylem.1 . . . . . 6 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
7 ttukeylem.2 . . . . . 6 (𝜑𝐵𝐴)
8 ttukeylem.3 . . . . . 6 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
96, 7, 8ttukeylem1 10462 . . . . 5 (𝜑 → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
109adantr 480 . . . 4 ((𝜑𝐷𝐶) → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
116, 7, 8ttukeylem1 10462 . . . . 5 (𝜑 → (𝐷𝐴 ↔ (𝒫 𝐷 ∩ Fin) ⊆ 𝐴))
1211adantr 480 . . . 4 ((𝜑𝐷𝐶) → (𝐷𝐴 ↔ (𝒫 𝐷 ∩ Fin) ⊆ 𝐴))
135, 10, 123imtr4d 294 . . 3 ((𝜑𝐷𝐶) → (𝐶𝐴𝐷𝐴))
1413impancom 451 . 2 ((𝜑𝐶𝐴) → (𝐷𝐶𝐷𝐴))
1514impr 454 1 ((𝜑 ∧ (𝐶𝐴𝐷𝐶)) → 𝐷𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2109  cdif 3911  cin 3913  wss 3914  𝒫 cpw 4563   cuni 4871  1-1-ontowf1o 6510  cfv 6511  Fincfn 8918  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-dom 8920  df-fin 8922
This theorem is referenced by:  ttukeylem6  10467  ttukeylem7  10468
  Copyright terms: Public domain W3C validator