| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imastopn | Structured version Visualization version GIF version | ||
| Description: The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| imastps.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imastps.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imastps.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| imastopn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| imastopn.j | ⊢ 𝐽 = (TopOpen‘𝑅) |
| imastopn.o | ⊢ 𝑂 = (TopOpen‘𝑈) |
| Ref | Expression |
|---|---|
| imastopn | ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imastps.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 2 | imastps.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | imastps.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 4 | imastopn.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 5 | imastopn.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝑅) | |
| 6 | eqid 2730 | . . . . . . 7 ⊢ (TopSet‘𝑈) = (TopSet‘𝑈) | |
| 7 | 1, 2, 3, 4, 5, 6 | imastset 17492 | . . . . . 6 ⊢ (𝜑 → (TopSet‘𝑈) = (𝐽 qTop 𝐹)) |
| 8 | 5 | fvexi 6875 | . . . . . . 7 ⊢ 𝐽 ∈ V |
| 9 | fofn 6777 | . . . . . . . . 9 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹 Fn 𝑉) | |
| 10 | 3, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
| 11 | fvex 6874 | . . . . . . . . 9 ⊢ (Base‘𝑅) ∈ V | |
| 12 | 2, 11 | eqeltrdi 2837 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ V) |
| 13 | fnex 7194 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝑉 ∧ 𝑉 ∈ V) → 𝐹 ∈ V) | |
| 14 | 10, 12, 13 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ V) |
| 15 | eqid 2730 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 16 | 15 | qtopval 23589 | . . . . . . 7 ⊢ ((𝐽 ∈ V ∧ 𝐹 ∈ V) → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
| 17 | 8, 14, 16 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
| 18 | 7, 17 | eqtrd 2765 | . . . . 5 ⊢ (𝜑 → (TopSet‘𝑈) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
| 19 | ssrab2 4046 | . . . . . 6 ⊢ {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽} ⊆ 𝒫 (𝐹 “ ∪ 𝐽) | |
| 20 | imassrn 6045 | . . . . . . . 8 ⊢ (𝐹 “ ∪ 𝐽) ⊆ ran 𝐹 | |
| 21 | forn 6778 | . . . . . . . . . 10 ⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 22 | 3, 21 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ran 𝐹 = 𝐵) |
| 23 | 1, 2, 3, 4 | imasbas 17482 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
| 24 | 22, 23 | eqtrd 2765 | . . . . . . . 8 ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) |
| 25 | 20, 24 | sseqtrid 3992 | . . . . . . 7 ⊢ (𝜑 → (𝐹 “ ∪ 𝐽) ⊆ (Base‘𝑈)) |
| 26 | 25 | sspwd 4579 | . . . . . 6 ⊢ (𝜑 → 𝒫 (𝐹 “ ∪ 𝐽) ⊆ 𝒫 (Base‘𝑈)) |
| 27 | 19, 26 | sstrid 3961 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽} ⊆ 𝒫 (Base‘𝑈)) |
| 28 | 18, 27 | eqsstrd 3984 | . . . 4 ⊢ (𝜑 → (TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈)) |
| 29 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 30 | 29, 6 | topnid 17405 | . . . 4 ⊢ ((TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈) → (TopSet‘𝑈) = (TopOpen‘𝑈)) |
| 31 | 28, 30 | syl 17 | . . 3 ⊢ (𝜑 → (TopSet‘𝑈) = (TopOpen‘𝑈)) |
| 32 | imastopn.o | . . 3 ⊢ 𝑂 = (TopOpen‘𝑈) | |
| 33 | 31, 32 | eqtr4di 2783 | . 2 ⊢ (𝜑 → (TopSet‘𝑈) = 𝑂) |
| 34 | 33, 7 | eqtr3d 2767 | 1 ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 ◡ccnv 5640 ran crn 5642 “ cima 5644 Fn wfn 6509 –onto→wfo 6512 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 TopSetcts 17233 TopOpenctopn 17391 qTop cqtop 17473 “s cimas 17474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-rest 17392 df-topn 17393 df-qtop 17477 df-imas 17478 |
| This theorem is referenced by: imastps 23615 xpstopnlem2 23705 qustgpopn 24014 qustgplem 24015 qustgphaus 24017 imasf1oxms 24384 |
| Copyright terms: Public domain | W3C validator |