Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imastopn | Structured version Visualization version GIF version |
Description: The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
imastps.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imastps.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imastps.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imastopn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
imastopn.j | ⊢ 𝐽 = (TopOpen‘𝑅) |
imastopn.o | ⊢ 𝑂 = (TopOpen‘𝑈) |
Ref | Expression |
---|---|
imastopn | ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imastps.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imastps.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imastps.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
4 | imastopn.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
5 | imastopn.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝑅) | |
6 | eqid 2737 | . . . . . . 7 ⊢ (TopSet‘𝑈) = (TopSet‘𝑈) | |
7 | 1, 2, 3, 4, 5, 6 | imastset 17027 | . . . . . 6 ⊢ (𝜑 → (TopSet‘𝑈) = (𝐽 qTop 𝐹)) |
8 | 5 | fvexi 6731 | . . . . . . 7 ⊢ 𝐽 ∈ V |
9 | fofn 6635 | . . . . . . . . 9 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹 Fn 𝑉) | |
10 | 3, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
11 | fvex 6730 | . . . . . . . . 9 ⊢ (Base‘𝑅) ∈ V | |
12 | 2, 11 | eqeltrdi 2846 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ V) |
13 | fnex 7033 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝑉 ∧ 𝑉 ∈ V) → 𝐹 ∈ V) | |
14 | 10, 12, 13 | syl2anc 587 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ V) |
15 | eqid 2737 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
16 | 15 | qtopval 22592 | . . . . . . 7 ⊢ ((𝐽 ∈ V ∧ 𝐹 ∈ V) → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
17 | 8, 14, 16 | sylancr 590 | . . . . . 6 ⊢ (𝜑 → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
18 | 7, 17 | eqtrd 2777 | . . . . 5 ⊢ (𝜑 → (TopSet‘𝑈) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
19 | ssrab2 3993 | . . . . . 6 ⊢ {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽} ⊆ 𝒫 (𝐹 “ ∪ 𝐽) | |
20 | imassrn 5940 | . . . . . . . 8 ⊢ (𝐹 “ ∪ 𝐽) ⊆ ran 𝐹 | |
21 | forn 6636 | . . . . . . . . . 10 ⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | |
22 | 3, 21 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ran 𝐹 = 𝐵) |
23 | 1, 2, 3, 4 | imasbas 17017 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
24 | 22, 23 | eqtrd 2777 | . . . . . . . 8 ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) |
25 | 20, 24 | sseqtrid 3953 | . . . . . . 7 ⊢ (𝜑 → (𝐹 “ ∪ 𝐽) ⊆ (Base‘𝑈)) |
26 | 25 | sspwd 4528 | . . . . . 6 ⊢ (𝜑 → 𝒫 (𝐹 “ ∪ 𝐽) ⊆ 𝒫 (Base‘𝑈)) |
27 | 19, 26 | sstrid 3912 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽} ⊆ 𝒫 (Base‘𝑈)) |
28 | 18, 27 | eqsstrd 3939 | . . . 4 ⊢ (𝜑 → (TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈)) |
29 | eqid 2737 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
30 | 29, 6 | topnid 16940 | . . . 4 ⊢ ((TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈) → (TopSet‘𝑈) = (TopOpen‘𝑈)) |
31 | 28, 30 | syl 17 | . . 3 ⊢ (𝜑 → (TopSet‘𝑈) = (TopOpen‘𝑈)) |
32 | imastopn.o | . . 3 ⊢ 𝑂 = (TopOpen‘𝑈) | |
33 | 31, 32 | eqtr4di 2796 | . 2 ⊢ (𝜑 → (TopSet‘𝑈) = 𝑂) |
34 | 33, 7 | eqtr3d 2779 | 1 ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 {crab 3065 Vcvv 3408 ∩ cin 3865 ⊆ wss 3866 𝒫 cpw 4513 ∪ cuni 4819 ◡ccnv 5550 ran crn 5552 “ cima 5554 Fn wfn 6375 –onto→wfo 6378 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 TopSetcts 16808 TopOpenctopn 16926 qTop cqtop 17008 “s cimas 17009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-struct 16700 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-rest 16927 df-topn 16928 df-qtop 17012 df-imas 17013 |
This theorem is referenced by: imastps 22618 xpstopnlem2 22708 qustgpopn 23017 qustgplem 23018 qustgphaus 23020 imasf1oxms 23387 |
Copyright terms: Public domain | W3C validator |