MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imastopn Structured version   Visualization version   GIF version

Theorem imastopn 22871
Description: The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
imastps.u (𝜑𝑈 = (𝐹s 𝑅))
imastps.v (𝜑𝑉 = (Base‘𝑅))
imastps.f (𝜑𝐹:𝑉onto𝐵)
imastopn.r (𝜑𝑅𝑊)
imastopn.j 𝐽 = (TopOpen‘𝑅)
imastopn.o 𝑂 = (TopOpen‘𝑈)
Assertion
Ref Expression
imastopn (𝜑𝑂 = (𝐽 qTop 𝐹))

Proof of Theorem imastopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imastps.u . . . . . . 7 (𝜑𝑈 = (𝐹s 𝑅))
2 imastps.v . . . . . . 7 (𝜑𝑉 = (Base‘𝑅))
3 imastps.f . . . . . . 7 (𝜑𝐹:𝑉onto𝐵)
4 imastopn.r . . . . . . 7 (𝜑𝑅𝑊)
5 imastopn.j . . . . . . 7 𝐽 = (TopOpen‘𝑅)
6 eqid 2738 . . . . . . 7 (TopSet‘𝑈) = (TopSet‘𝑈)
71, 2, 3, 4, 5, 6imastset 17233 . . . . . 6 (𝜑 → (TopSet‘𝑈) = (𝐽 qTop 𝐹))
85fvexi 6788 . . . . . . 7 𝐽 ∈ V
9 fofn 6690 . . . . . . . . 9 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
103, 9syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑉)
11 fvex 6787 . . . . . . . . 9 (Base‘𝑅) ∈ V
122, 11eqeltrdi 2847 . . . . . . . 8 (𝜑𝑉 ∈ V)
13 fnex 7093 . . . . . . . 8 ((𝐹 Fn 𝑉𝑉 ∈ V) → 𝐹 ∈ V)
1410, 12, 13syl2anc 584 . . . . . . 7 (𝜑𝐹 ∈ V)
15 eqid 2738 . . . . . . . 8 𝐽 = 𝐽
1615qtopval 22846 . . . . . . 7 ((𝐽 ∈ V ∧ 𝐹 ∈ V) → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 𝐽) ∣ ((𝐹𝑥) ∩ 𝐽) ∈ 𝐽})
178, 14, 16sylancr 587 . . . . . 6 (𝜑 → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 𝐽) ∣ ((𝐹𝑥) ∩ 𝐽) ∈ 𝐽})
187, 17eqtrd 2778 . . . . 5 (𝜑 → (TopSet‘𝑈) = {𝑥 ∈ 𝒫 (𝐹 𝐽) ∣ ((𝐹𝑥) ∩ 𝐽) ∈ 𝐽})
19 ssrab2 4013 . . . . . 6 {𝑥 ∈ 𝒫 (𝐹 𝐽) ∣ ((𝐹𝑥) ∩ 𝐽) ∈ 𝐽} ⊆ 𝒫 (𝐹 𝐽)
20 imassrn 5980 . . . . . . . 8 (𝐹 𝐽) ⊆ ran 𝐹
21 forn 6691 . . . . . . . . . 10 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
223, 21syl 17 . . . . . . . . 9 (𝜑 → ran 𝐹 = 𝐵)
231, 2, 3, 4imasbas 17223 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝑈))
2422, 23eqtrd 2778 . . . . . . . 8 (𝜑 → ran 𝐹 = (Base‘𝑈))
2520, 24sseqtrid 3973 . . . . . . 7 (𝜑 → (𝐹 𝐽) ⊆ (Base‘𝑈))
2625sspwd 4548 . . . . . 6 (𝜑 → 𝒫 (𝐹 𝐽) ⊆ 𝒫 (Base‘𝑈))
2719, 26sstrid 3932 . . . . 5 (𝜑 → {𝑥 ∈ 𝒫 (𝐹 𝐽) ∣ ((𝐹𝑥) ∩ 𝐽) ∈ 𝐽} ⊆ 𝒫 (Base‘𝑈))
2818, 27eqsstrd 3959 . . . 4 (𝜑 → (TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈))
29 eqid 2738 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
3029, 6topnid 17146 . . . 4 ((TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈) → (TopSet‘𝑈) = (TopOpen‘𝑈))
3128, 30syl 17 . . 3 (𝜑 → (TopSet‘𝑈) = (TopOpen‘𝑈))
32 imastopn.o . . 3 𝑂 = (TopOpen‘𝑈)
3331, 32eqtr4di 2796 . 2 (𝜑 → (TopSet‘𝑈) = 𝑂)
3433, 7eqtr3d 2780 1 (𝜑𝑂 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839  ccnv 5588  ran crn 5590  cima 5592   Fn wfn 6428  ontowfo 6431  cfv 6433  (class class class)co 7275  Basecbs 16912  TopSetcts 16968  TopOpenctopn 17132   qTop cqtop 17214  s cimas 17215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-rest 17133  df-topn 17134  df-qtop 17218  df-imas 17219
This theorem is referenced by:  imastps  22872  xpstopnlem2  22962  qustgpopn  23271  qustgplem  23272  qustgphaus  23274  imasf1oxms  23645
  Copyright terms: Public domain W3C validator