MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imastopn Structured version   Visualization version   GIF version

Theorem imastopn 23728
Description: The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
imastps.u (𝜑𝑈 = (𝐹s 𝑅))
imastps.v (𝜑𝑉 = (Base‘𝑅))
imastps.f (𝜑𝐹:𝑉onto𝐵)
imastopn.r (𝜑𝑅𝑊)
imastopn.j 𝐽 = (TopOpen‘𝑅)
imastopn.o 𝑂 = (TopOpen‘𝑈)
Assertion
Ref Expression
imastopn (𝜑𝑂 = (𝐽 qTop 𝐹))

Proof of Theorem imastopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imastps.u . . . . . . 7 (𝜑𝑈 = (𝐹s 𝑅))
2 imastps.v . . . . . . 7 (𝜑𝑉 = (Base‘𝑅))
3 imastps.f . . . . . . 7 (𝜑𝐹:𝑉onto𝐵)
4 imastopn.r . . . . . . 7 (𝜑𝑅𝑊)
5 imastopn.j . . . . . . 7 𝐽 = (TopOpen‘𝑅)
6 eqid 2737 . . . . . . 7 (TopSet‘𝑈) = (TopSet‘𝑈)
71, 2, 3, 4, 5, 6imastset 17567 . . . . . 6 (𝜑 → (TopSet‘𝑈) = (𝐽 qTop 𝐹))
85fvexi 6920 . . . . . . 7 𝐽 ∈ V
9 fofn 6822 . . . . . . . . 9 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
103, 9syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑉)
11 fvex 6919 . . . . . . . . 9 (Base‘𝑅) ∈ V
122, 11eqeltrdi 2849 . . . . . . . 8 (𝜑𝑉 ∈ V)
13 fnex 7237 . . . . . . . 8 ((𝐹 Fn 𝑉𝑉 ∈ V) → 𝐹 ∈ V)
1410, 12, 13syl2anc 584 . . . . . . 7 (𝜑𝐹 ∈ V)
15 eqid 2737 . . . . . . . 8 𝐽 = 𝐽
1615qtopval 23703 . . . . . . 7 ((𝐽 ∈ V ∧ 𝐹 ∈ V) → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 𝐽) ∣ ((𝐹𝑥) ∩ 𝐽) ∈ 𝐽})
178, 14, 16sylancr 587 . . . . . 6 (𝜑 → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 𝐽) ∣ ((𝐹𝑥) ∩ 𝐽) ∈ 𝐽})
187, 17eqtrd 2777 . . . . 5 (𝜑 → (TopSet‘𝑈) = {𝑥 ∈ 𝒫 (𝐹 𝐽) ∣ ((𝐹𝑥) ∩ 𝐽) ∈ 𝐽})
19 ssrab2 4080 . . . . . 6 {𝑥 ∈ 𝒫 (𝐹 𝐽) ∣ ((𝐹𝑥) ∩ 𝐽) ∈ 𝐽} ⊆ 𝒫 (𝐹 𝐽)
20 imassrn 6089 . . . . . . . 8 (𝐹 𝐽) ⊆ ran 𝐹
21 forn 6823 . . . . . . . . . 10 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
223, 21syl 17 . . . . . . . . 9 (𝜑 → ran 𝐹 = 𝐵)
231, 2, 3, 4imasbas 17557 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝑈))
2422, 23eqtrd 2777 . . . . . . . 8 (𝜑 → ran 𝐹 = (Base‘𝑈))
2520, 24sseqtrid 4026 . . . . . . 7 (𝜑 → (𝐹 𝐽) ⊆ (Base‘𝑈))
2625sspwd 4613 . . . . . 6 (𝜑 → 𝒫 (𝐹 𝐽) ⊆ 𝒫 (Base‘𝑈))
2719, 26sstrid 3995 . . . . 5 (𝜑 → {𝑥 ∈ 𝒫 (𝐹 𝐽) ∣ ((𝐹𝑥) ∩ 𝐽) ∈ 𝐽} ⊆ 𝒫 (Base‘𝑈))
2818, 27eqsstrd 4018 . . . 4 (𝜑 → (TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈))
29 eqid 2737 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
3029, 6topnid 17480 . . . 4 ((TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈) → (TopSet‘𝑈) = (TopOpen‘𝑈))
3128, 30syl 17 . . 3 (𝜑 → (TopSet‘𝑈) = (TopOpen‘𝑈))
32 imastopn.o . . 3 𝑂 = (TopOpen‘𝑈)
3331, 32eqtr4di 2795 . 2 (𝜑 → (TopSet‘𝑈) = 𝑂)
3433, 7eqtr3d 2779 1 (𝜑𝑂 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  cin 3950  wss 3951  𝒫 cpw 4600   cuni 4907  ccnv 5684  ran crn 5686  cima 5688   Fn wfn 6556  ontowfo 6559  cfv 6561  (class class class)co 7431  Basecbs 17247  TopSetcts 17303  TopOpenctopn 17466   qTop cqtop 17548  s cimas 17549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-rest 17467  df-topn 17468  df-qtop 17552  df-imas 17553
This theorem is referenced by:  imastps  23729  xpstopnlem2  23819  qustgpopn  24128  qustgplem  24129  qustgphaus  24131  imasf1oxms  24502
  Copyright terms: Public domain W3C validator