![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imastopn | Structured version Visualization version GIF version |
Description: The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
imastps.u | β’ (π β π = (πΉ βs π )) |
imastps.v | β’ (π β π = (Baseβπ )) |
imastps.f | β’ (π β πΉ:πβontoβπ΅) |
imastopn.r | β’ (π β π β π) |
imastopn.j | β’ π½ = (TopOpenβπ ) |
imastopn.o | β’ π = (TopOpenβπ) |
Ref | Expression |
---|---|
imastopn | β’ (π β π = (π½ qTop πΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imastps.u | . . . . . . 7 β’ (π β π = (πΉ βs π )) | |
2 | imastps.v | . . . . . . 7 β’ (π β π = (Baseβπ )) | |
3 | imastps.f | . . . . . . 7 β’ (π β πΉ:πβontoβπ΅) | |
4 | imastopn.r | . . . . . . 7 β’ (π β π β π) | |
5 | imastopn.j | . . . . . . 7 β’ π½ = (TopOpenβπ ) | |
6 | eqid 2726 | . . . . . . 7 β’ (TopSetβπ) = (TopSetβπ) | |
7 | 1, 2, 3, 4, 5, 6 | imastset 17477 | . . . . . 6 β’ (π β (TopSetβπ) = (π½ qTop πΉ)) |
8 | 5 | fvexi 6899 | . . . . . . 7 β’ π½ β V |
9 | fofn 6801 | . . . . . . . . 9 β’ (πΉ:πβontoβπ΅ β πΉ Fn π) | |
10 | 3, 9 | syl 17 | . . . . . . . 8 β’ (π β πΉ Fn π) |
11 | fvex 6898 | . . . . . . . . 9 β’ (Baseβπ ) β V | |
12 | 2, 11 | eqeltrdi 2835 | . . . . . . . 8 β’ (π β π β V) |
13 | fnex 7214 | . . . . . . . 8 β’ ((πΉ Fn π β§ π β V) β πΉ β V) | |
14 | 10, 12, 13 | syl2anc 583 | . . . . . . 7 β’ (π β πΉ β V) |
15 | eqid 2726 | . . . . . . . 8 β’ βͺ π½ = βͺ π½ | |
16 | 15 | qtopval 23554 | . . . . . . 7 β’ ((π½ β V β§ πΉ β V) β (π½ qTop πΉ) = {π₯ β π« (πΉ β βͺ π½) β£ ((β‘πΉ β π₯) β© βͺ π½) β π½}) |
17 | 8, 14, 16 | sylancr 586 | . . . . . 6 β’ (π β (π½ qTop πΉ) = {π₯ β π« (πΉ β βͺ π½) β£ ((β‘πΉ β π₯) β© βͺ π½) β π½}) |
18 | 7, 17 | eqtrd 2766 | . . . . 5 β’ (π β (TopSetβπ) = {π₯ β π« (πΉ β βͺ π½) β£ ((β‘πΉ β π₯) β© βͺ π½) β π½}) |
19 | ssrab2 4072 | . . . . . 6 β’ {π₯ β π« (πΉ β βͺ π½) β£ ((β‘πΉ β π₯) β© βͺ π½) β π½} β π« (πΉ β βͺ π½) | |
20 | imassrn 6064 | . . . . . . . 8 β’ (πΉ β βͺ π½) β ran πΉ | |
21 | forn 6802 | . . . . . . . . . 10 β’ (πΉ:πβontoβπ΅ β ran πΉ = π΅) | |
22 | 3, 21 | syl 17 | . . . . . . . . 9 β’ (π β ran πΉ = π΅) |
23 | 1, 2, 3, 4 | imasbas 17467 | . . . . . . . . 9 β’ (π β π΅ = (Baseβπ)) |
24 | 22, 23 | eqtrd 2766 | . . . . . . . 8 β’ (π β ran πΉ = (Baseβπ)) |
25 | 20, 24 | sseqtrid 4029 | . . . . . . 7 β’ (π β (πΉ β βͺ π½) β (Baseβπ)) |
26 | 25 | sspwd 4610 | . . . . . 6 β’ (π β π« (πΉ β βͺ π½) β π« (Baseβπ)) |
27 | 19, 26 | sstrid 3988 | . . . . 5 β’ (π β {π₯ β π« (πΉ β βͺ π½) β£ ((β‘πΉ β π₯) β© βͺ π½) β π½} β π« (Baseβπ)) |
28 | 18, 27 | eqsstrd 4015 | . . . 4 β’ (π β (TopSetβπ) β π« (Baseβπ)) |
29 | eqid 2726 | . . . . 5 β’ (Baseβπ) = (Baseβπ) | |
30 | 29, 6 | topnid 17390 | . . . 4 β’ ((TopSetβπ) β π« (Baseβπ) β (TopSetβπ) = (TopOpenβπ)) |
31 | 28, 30 | syl 17 | . . 3 β’ (π β (TopSetβπ) = (TopOpenβπ)) |
32 | imastopn.o | . . 3 β’ π = (TopOpenβπ) | |
33 | 31, 32 | eqtr4di 2784 | . 2 β’ (π β (TopSetβπ) = π) |
34 | 33, 7 | eqtr3d 2768 | 1 β’ (π β π = (π½ qTop πΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 {crab 3426 Vcvv 3468 β© cin 3942 β wss 3943 π« cpw 4597 βͺ cuni 4902 β‘ccnv 5668 ran crn 5670 β cima 5672 Fn wfn 6532 βontoβwfo 6535 βcfv 6537 (class class class)co 7405 Basecbs 17153 TopSetcts 17212 TopOpenctopn 17376 qTop cqtop 17458 βs cimas 17459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-struct 17089 df-slot 17124 df-ndx 17136 df-base 17154 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-rest 17377 df-topn 17378 df-qtop 17462 df-imas 17463 |
This theorem is referenced by: imastps 23580 xpstopnlem2 23670 qustgpopn 23979 qustgplem 23980 qustgphaus 23982 imasf1oxms 24353 |
Copyright terms: Public domain | W3C validator |