Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imastopn | Structured version Visualization version GIF version |
Description: The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
imastps.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imastps.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imastps.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imastopn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
imastopn.j | ⊢ 𝐽 = (TopOpen‘𝑅) |
imastopn.o | ⊢ 𝑂 = (TopOpen‘𝑈) |
Ref | Expression |
---|---|
imastopn | ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imastps.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imastps.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imastps.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
4 | imastopn.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
5 | imastopn.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝑅) | |
6 | eqid 2738 | . . . . . . 7 ⊢ (TopSet‘𝑈) = (TopSet‘𝑈) | |
7 | 1, 2, 3, 4, 5, 6 | imastset 17233 | . . . . . 6 ⊢ (𝜑 → (TopSet‘𝑈) = (𝐽 qTop 𝐹)) |
8 | 5 | fvexi 6788 | . . . . . . 7 ⊢ 𝐽 ∈ V |
9 | fofn 6690 | . . . . . . . . 9 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹 Fn 𝑉) | |
10 | 3, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
11 | fvex 6787 | . . . . . . . . 9 ⊢ (Base‘𝑅) ∈ V | |
12 | 2, 11 | eqeltrdi 2847 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ V) |
13 | fnex 7093 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝑉 ∧ 𝑉 ∈ V) → 𝐹 ∈ V) | |
14 | 10, 12, 13 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ V) |
15 | eqid 2738 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
16 | 15 | qtopval 22846 | . . . . . . 7 ⊢ ((𝐽 ∈ V ∧ 𝐹 ∈ V) → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
17 | 8, 14, 16 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
18 | 7, 17 | eqtrd 2778 | . . . . 5 ⊢ (𝜑 → (TopSet‘𝑈) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
19 | ssrab2 4013 | . . . . . 6 ⊢ {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽} ⊆ 𝒫 (𝐹 “ ∪ 𝐽) | |
20 | imassrn 5980 | . . . . . . . 8 ⊢ (𝐹 “ ∪ 𝐽) ⊆ ran 𝐹 | |
21 | forn 6691 | . . . . . . . . . 10 ⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | |
22 | 3, 21 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ran 𝐹 = 𝐵) |
23 | 1, 2, 3, 4 | imasbas 17223 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
24 | 22, 23 | eqtrd 2778 | . . . . . . . 8 ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) |
25 | 20, 24 | sseqtrid 3973 | . . . . . . 7 ⊢ (𝜑 → (𝐹 “ ∪ 𝐽) ⊆ (Base‘𝑈)) |
26 | 25 | sspwd 4548 | . . . . . 6 ⊢ (𝜑 → 𝒫 (𝐹 “ ∪ 𝐽) ⊆ 𝒫 (Base‘𝑈)) |
27 | 19, 26 | sstrid 3932 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽} ⊆ 𝒫 (Base‘𝑈)) |
28 | 18, 27 | eqsstrd 3959 | . . . 4 ⊢ (𝜑 → (TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈)) |
29 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
30 | 29, 6 | topnid 17146 | . . . 4 ⊢ ((TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈) → (TopSet‘𝑈) = (TopOpen‘𝑈)) |
31 | 28, 30 | syl 17 | . . 3 ⊢ (𝜑 → (TopSet‘𝑈) = (TopOpen‘𝑈)) |
32 | imastopn.o | . . 3 ⊢ 𝑂 = (TopOpen‘𝑈) | |
33 | 31, 32 | eqtr4di 2796 | . 2 ⊢ (𝜑 → (TopSet‘𝑈) = 𝑂) |
34 | 33, 7 | eqtr3d 2780 | 1 ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 ◡ccnv 5588 ran crn 5590 “ cima 5592 Fn wfn 6428 –onto→wfo 6431 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 TopSetcts 16968 TopOpenctopn 17132 qTop cqtop 17214 “s cimas 17215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-rest 17133 df-topn 17134 df-qtop 17218 df-imas 17219 |
This theorem is referenced by: imastps 22872 xpstopnlem2 22962 qustgpopn 23271 qustgplem 23272 qustgphaus 23274 imasf1oxms 23645 |
Copyright terms: Public domain | W3C validator |