| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imastopn | Structured version Visualization version GIF version | ||
| Description: The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| imastps.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imastps.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imastps.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| imastopn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| imastopn.j | ⊢ 𝐽 = (TopOpen‘𝑅) |
| imastopn.o | ⊢ 𝑂 = (TopOpen‘𝑈) |
| Ref | Expression |
|---|---|
| imastopn | ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imastps.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 2 | imastps.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | imastps.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 4 | imastopn.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 5 | imastopn.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝑅) | |
| 6 | eqid 2737 | . . . . . . 7 ⊢ (TopSet‘𝑈) = (TopSet‘𝑈) | |
| 7 | 1, 2, 3, 4, 5, 6 | imastset 17567 | . . . . . 6 ⊢ (𝜑 → (TopSet‘𝑈) = (𝐽 qTop 𝐹)) |
| 8 | 5 | fvexi 6920 | . . . . . . 7 ⊢ 𝐽 ∈ V |
| 9 | fofn 6822 | . . . . . . . . 9 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹 Fn 𝑉) | |
| 10 | 3, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
| 11 | fvex 6919 | . . . . . . . . 9 ⊢ (Base‘𝑅) ∈ V | |
| 12 | 2, 11 | eqeltrdi 2849 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ V) |
| 13 | fnex 7237 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝑉 ∧ 𝑉 ∈ V) → 𝐹 ∈ V) | |
| 14 | 10, 12, 13 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ V) |
| 15 | eqid 2737 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 16 | 15 | qtopval 23703 | . . . . . . 7 ⊢ ((𝐽 ∈ V ∧ 𝐹 ∈ V) → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
| 17 | 8, 14, 16 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
| 18 | 7, 17 | eqtrd 2777 | . . . . 5 ⊢ (𝜑 → (TopSet‘𝑈) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
| 19 | ssrab2 4080 | . . . . . 6 ⊢ {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽} ⊆ 𝒫 (𝐹 “ ∪ 𝐽) | |
| 20 | imassrn 6089 | . . . . . . . 8 ⊢ (𝐹 “ ∪ 𝐽) ⊆ ran 𝐹 | |
| 21 | forn 6823 | . . . . . . . . . 10 ⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 22 | 3, 21 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ran 𝐹 = 𝐵) |
| 23 | 1, 2, 3, 4 | imasbas 17557 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
| 24 | 22, 23 | eqtrd 2777 | . . . . . . . 8 ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) |
| 25 | 20, 24 | sseqtrid 4026 | . . . . . . 7 ⊢ (𝜑 → (𝐹 “ ∪ 𝐽) ⊆ (Base‘𝑈)) |
| 26 | 25 | sspwd 4613 | . . . . . 6 ⊢ (𝜑 → 𝒫 (𝐹 “ ∪ 𝐽) ⊆ 𝒫 (Base‘𝑈)) |
| 27 | 19, 26 | sstrid 3995 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽} ⊆ 𝒫 (Base‘𝑈)) |
| 28 | 18, 27 | eqsstrd 4018 | . . . 4 ⊢ (𝜑 → (TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈)) |
| 29 | eqid 2737 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 30 | 29, 6 | topnid 17480 | . . . 4 ⊢ ((TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈) → (TopSet‘𝑈) = (TopOpen‘𝑈)) |
| 31 | 28, 30 | syl 17 | . . 3 ⊢ (𝜑 → (TopSet‘𝑈) = (TopOpen‘𝑈)) |
| 32 | imastopn.o | . . 3 ⊢ 𝑂 = (TopOpen‘𝑈) | |
| 33 | 31, 32 | eqtr4di 2795 | . 2 ⊢ (𝜑 → (TopSet‘𝑈) = 𝑂) |
| 34 | 33, 7 | eqtr3d 2779 | 1 ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3436 Vcvv 3480 ∩ cin 3950 ⊆ wss 3951 𝒫 cpw 4600 ∪ cuni 4907 ◡ccnv 5684 ran crn 5686 “ cima 5688 Fn wfn 6556 –onto→wfo 6559 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 TopSetcts 17303 TopOpenctopn 17466 qTop cqtop 17548 “s cimas 17549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-rest 17467 df-topn 17468 df-qtop 17552 df-imas 17553 |
| This theorem is referenced by: imastps 23729 xpstopnlem2 23819 qustgpopn 24128 qustgplem 24129 qustgphaus 24131 imasf1oxms 24502 |
| Copyright terms: Public domain | W3C validator |