| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imastopn | Structured version Visualization version GIF version | ||
| Description: The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| imastps.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imastps.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imastps.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| imastopn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| imastopn.j | ⊢ 𝐽 = (TopOpen‘𝑅) |
| imastopn.o | ⊢ 𝑂 = (TopOpen‘𝑈) |
| Ref | Expression |
|---|---|
| imastopn | ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imastps.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 2 | imastps.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | imastps.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 4 | imastopn.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 5 | imastopn.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝑅) | |
| 6 | eqid 2729 | . . . . . . 7 ⊢ (TopSet‘𝑈) = (TopSet‘𝑈) | |
| 7 | 1, 2, 3, 4, 5, 6 | imastset 17461 | . . . . . 6 ⊢ (𝜑 → (TopSet‘𝑈) = (𝐽 qTop 𝐹)) |
| 8 | 5 | fvexi 6854 | . . . . . . 7 ⊢ 𝐽 ∈ V |
| 9 | fofn 6756 | . . . . . . . . 9 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹 Fn 𝑉) | |
| 10 | 3, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
| 11 | fvex 6853 | . . . . . . . . 9 ⊢ (Base‘𝑅) ∈ V | |
| 12 | 2, 11 | eqeltrdi 2836 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ V) |
| 13 | fnex 7173 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝑉 ∧ 𝑉 ∈ V) → 𝐹 ∈ V) | |
| 14 | 10, 12, 13 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ V) |
| 15 | eqid 2729 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 16 | 15 | qtopval 23615 | . . . . . . 7 ⊢ ((𝐽 ∈ V ∧ 𝐹 ∈ V) → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
| 17 | 8, 14, 16 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
| 18 | 7, 17 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → (TopSet‘𝑈) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
| 19 | ssrab2 4039 | . . . . . 6 ⊢ {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽} ⊆ 𝒫 (𝐹 “ ∪ 𝐽) | |
| 20 | imassrn 6031 | . . . . . . . 8 ⊢ (𝐹 “ ∪ 𝐽) ⊆ ran 𝐹 | |
| 21 | forn 6757 | . . . . . . . . . 10 ⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 22 | 3, 21 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ran 𝐹 = 𝐵) |
| 23 | 1, 2, 3, 4 | imasbas 17451 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
| 24 | 22, 23 | eqtrd 2764 | . . . . . . . 8 ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) |
| 25 | 20, 24 | sseqtrid 3986 | . . . . . . 7 ⊢ (𝜑 → (𝐹 “ ∪ 𝐽) ⊆ (Base‘𝑈)) |
| 26 | 25 | sspwd 4572 | . . . . . 6 ⊢ (𝜑 → 𝒫 (𝐹 “ ∪ 𝐽) ⊆ 𝒫 (Base‘𝑈)) |
| 27 | 19, 26 | sstrid 3955 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽} ⊆ 𝒫 (Base‘𝑈)) |
| 28 | 18, 27 | eqsstrd 3978 | . . . 4 ⊢ (𝜑 → (TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈)) |
| 29 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 30 | 29, 6 | topnid 17374 | . . . 4 ⊢ ((TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈) → (TopSet‘𝑈) = (TopOpen‘𝑈)) |
| 31 | 28, 30 | syl 17 | . . 3 ⊢ (𝜑 → (TopSet‘𝑈) = (TopOpen‘𝑈)) |
| 32 | imastopn.o | . . 3 ⊢ 𝑂 = (TopOpen‘𝑈) | |
| 33 | 31, 32 | eqtr4di 2782 | . 2 ⊢ (𝜑 → (TopSet‘𝑈) = 𝑂) |
| 34 | 33, 7 | eqtr3d 2766 | 1 ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 𝒫 cpw 4559 ∪ cuni 4867 ◡ccnv 5630 ran crn 5632 “ cima 5634 Fn wfn 6494 –onto→wfo 6497 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 TopSetcts 17202 TopOpenctopn 17360 qTop cqtop 17442 “s cimas 17443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-rest 17361 df-topn 17362 df-qtop 17446 df-imas 17447 |
| This theorem is referenced by: imastps 23641 xpstopnlem2 23731 qustgpopn 24040 qustgplem 24041 qustgphaus 24043 imasf1oxms 24410 |
| Copyright terms: Public domain | W3C validator |