MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs5lem Structured version   Visualization version   GIF version

Theorem isacs5lem 18178
Description: If closure commutes with directed unions, then the closure of a set is the closure of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isacs5lem ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
Distinct variable groups:   𝐶,𝑠,𝑡   𝐹,𝑠,𝑡   𝑋,𝑠,𝑡

Proof of Theorem isacs5lem
StepHypRef Expression
1 unifpw 9052 . . . . . 6 (𝒫 𝑠 ∩ Fin) = 𝑠
21fveq2i 6759 . . . . 5 (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹𝑠)
3 vex 3426 . . . . . . 7 𝑠 ∈ V
4 fpwipodrs 18173 . . . . . . 7 (𝑠 ∈ V → (toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset)
53, 4mp1i 13 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset)
6 fveq2 6756 . . . . . . . . 9 (𝑡 = (𝒫 𝑠 ∩ Fin) → (toInc‘𝑡) = (toInc‘(𝒫 𝑠 ∩ Fin)))
76eleq1d 2823 . . . . . . . 8 (𝑡 = (𝒫 𝑠 ∩ Fin) → ((toInc‘𝑡) ∈ Dirset ↔ (toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset))
8 unieq 4847 . . . . . . . . . 10 (𝑡 = (𝒫 𝑠 ∩ Fin) → 𝑡 = (𝒫 𝑠 ∩ Fin))
98fveq2d 6760 . . . . . . . . 9 (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹 𝑡) = (𝐹 (𝒫 𝑠 ∩ Fin)))
10 imaeq2 5954 . . . . . . . . . 10 (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹𝑡) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
1110unieqd 4850 . . . . . . . . 9 (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹𝑡) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
129, 11eqeq12d 2754 . . . . . . . 8 (𝑡 = (𝒫 𝑠 ∩ Fin) → ((𝐹 𝑡) = (𝐹𝑡) ↔ (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
137, 12imbi12d 344 . . . . . . 7 (𝑡 = (𝒫 𝑠 ∩ Fin) → (((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)) ↔ ((toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset → (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))))
14 simplr 765 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)))
15 inss1 4159 . . . . . . . . . 10 (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑠
16 elpwi 4539 . . . . . . . . . . . 12 (𝑠 ∈ 𝒫 𝑋𝑠𝑋)
1716sspwd 4545 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑋 → 𝒫 𝑠 ⊆ 𝒫 𝑋)
1817adantl 481 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → 𝒫 𝑠 ⊆ 𝒫 𝑋)
1915, 18sstrid 3928 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑋)
20 vpwex 5295 . . . . . . . . . . 11 𝒫 𝑠 ∈ V
2120inex1 5236 . . . . . . . . . 10 (𝒫 𝑠 ∩ Fin) ∈ V
2221elpw 4534 . . . . . . . . 9 ((𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋 ↔ (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑋)
2319, 22sylibr 233 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋)
2423adantlr 711 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋)
2513, 14, 24rspcdva 3554 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → ((toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset → (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
265, 25mpd 15 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
272, 26eqtr3id 2793 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
2827ralrimiva 3107 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
2928ex 412 . 2 (𝐶 ∈ (Moore‘𝑋) → (∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)) → ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
3029imdistani 568 1 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836  cima 5583  cfv 6418  Fincfn 8691  Moorecmre 17208  mrClscmrc 17209  Dirsetcdrs 17927  toInccipo 18160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-tset 16907  df-ple 16908  df-ocomp 16909  df-proset 17928  df-drs 17929  df-poset 17946  df-ipo 18161
This theorem is referenced by:  acsficl  18180  isacs5  18181  isacs4  18182
  Copyright terms: Public domain W3C validator