Proof of Theorem isacs5lem
| Step | Hyp | Ref
| Expression |
| 1 | | unifpw 9378 |
. . . . . 6
⊢ ∪ (𝒫 𝑠 ∩ Fin) = 𝑠 |
| 2 | 1 | fveq2i 6890 |
. . . . 5
⊢ (𝐹‘∪ (𝒫 𝑠 ∩ Fin)) = (𝐹‘𝑠) |
| 3 | | vex 3468 |
. . . . . . 7
⊢ 𝑠 ∈ V |
| 4 | | fpwipodrs 18559 |
. . . . . . 7
⊢ (𝑠 ∈ V →
(toInc‘(𝒫 𝑠
∩ Fin)) ∈ Dirset) |
| 5 | 3, 4 | mp1i 13 |
. . . . . 6
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (toInc‘(𝒫 𝑠 ∩ Fin)) ∈
Dirset) |
| 6 | | fveq2 6887 |
. . . . . . . . 9
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → (toInc‘𝑡) = (toInc‘(𝒫
𝑠 ∩
Fin))) |
| 7 | 6 | eleq1d 2818 |
. . . . . . . 8
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → ((toInc‘𝑡) ∈ Dirset ↔
(toInc‘(𝒫 𝑠
∩ Fin)) ∈ Dirset)) |
| 8 | | unieq 4900 |
. . . . . . . . . 10
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → ∪ 𝑡 =
∪ (𝒫 𝑠 ∩ Fin)) |
| 9 | 8 | fveq2d 6891 |
. . . . . . . . 9
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹‘∪ 𝑡) = (𝐹‘∪
(𝒫 𝑠 ∩
Fin))) |
| 10 | | imaeq2 6056 |
. . . . . . . . . 10
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹 “ 𝑡) = (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
| 11 | 10 | unieqd 4902 |
. . . . . . . . 9
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → ∪ (𝐹
“ 𝑡) = ∪ (𝐹
“ (𝒫 𝑠 ∩
Fin))) |
| 12 | 9, 11 | eqeq12d 2750 |
. . . . . . . 8
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → ((𝐹‘∪ 𝑡) = ∪
(𝐹 “ 𝑡) ↔ (𝐹‘∪
(𝒫 𝑠 ∩ Fin)) =
∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
| 13 | 7, 12 | imbi12d 344 |
. . . . . . 7
⊢ (𝑡 = (𝒫 𝑠 ∩ Fin) → (((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡)) ↔ ((toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset
→ (𝐹‘∪ (𝒫 𝑠 ∩ Fin)) = ∪
(𝐹 “ (𝒫 𝑠 ∩ Fin))))) |
| 14 | | simplr 768 |
. . . . . . 7
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪
(𝐹 “ 𝑡))) |
| 15 | | inss1 4219 |
. . . . . . . . . 10
⊢
(𝒫 𝑠 ∩
Fin) ⊆ 𝒫 𝑠 |
| 16 | | elpwi 4589 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋) |
| 17 | 16 | sspwd 4595 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ 𝒫 𝑋 → 𝒫 𝑠 ⊆ 𝒫 𝑋) |
| 18 | 17 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → 𝒫 𝑠 ⊆ 𝒫 𝑋) |
| 19 | 15, 18 | sstrid 3977 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑋) |
| 20 | | vpwex 5359 |
. . . . . . . . . . 11
⊢ 𝒫
𝑠 ∈ V |
| 21 | 20 | inex1 5299 |
. . . . . . . . . 10
⊢
(𝒫 𝑠 ∩
Fin) ∈ V |
| 22 | 21 | elpw 4586 |
. . . . . . . . 9
⊢
((𝒫 𝑠 ∩
Fin) ∈ 𝒫 𝒫 𝑋 ↔ (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑋) |
| 23 | 19, 22 | sylibr 234 |
. . . . . . . 8
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋) |
| 24 | 23 | adantlr 715 |
. . . . . . 7
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋) |
| 25 | 13, 14, 24 | rspcdva 3607 |
. . . . . 6
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → ((toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset
→ (𝐹‘∪ (𝒫 𝑠 ∩ Fin)) = ∪
(𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
| 26 | 5, 25 | mpd 15 |
. . . . 5
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝐹‘∪
(𝒫 𝑠 ∩ Fin)) =
∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
| 27 | 2, 26 | eqtr3id 2783 |
. . . 4
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
| 28 | 27 | ralrimiva 3133 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) → ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
| 29 | 28 | ex 412 |
. 2
⊢ (𝐶 ∈ (Moore‘𝑋) → (∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡)) → ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
| 30 | 29 | imdistani 568 |
1
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫
𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) =
∪ (𝐹 “ 𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |