MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs5lem Structured version   Visualization version   GIF version

Theorem isacs5lem 18263
Description: If closure commutes with directed unions, then the closure of a set is the closure of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isacs5lem ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
Distinct variable groups:   𝐶,𝑠,𝑡   𝐹,𝑠,𝑡   𝑋,𝑠,𝑡

Proof of Theorem isacs5lem
StepHypRef Expression
1 unifpw 9122 . . . . . 6 (𝒫 𝑠 ∩ Fin) = 𝑠
21fveq2i 6777 . . . . 5 (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹𝑠)
3 vex 3436 . . . . . . 7 𝑠 ∈ V
4 fpwipodrs 18258 . . . . . . 7 (𝑠 ∈ V → (toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset)
53, 4mp1i 13 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset)
6 fveq2 6774 . . . . . . . . 9 (𝑡 = (𝒫 𝑠 ∩ Fin) → (toInc‘𝑡) = (toInc‘(𝒫 𝑠 ∩ Fin)))
76eleq1d 2823 . . . . . . . 8 (𝑡 = (𝒫 𝑠 ∩ Fin) → ((toInc‘𝑡) ∈ Dirset ↔ (toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset))
8 unieq 4850 . . . . . . . . . 10 (𝑡 = (𝒫 𝑠 ∩ Fin) → 𝑡 = (𝒫 𝑠 ∩ Fin))
98fveq2d 6778 . . . . . . . . 9 (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹 𝑡) = (𝐹 (𝒫 𝑠 ∩ Fin)))
10 imaeq2 5965 . . . . . . . . . 10 (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹𝑡) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
1110unieqd 4853 . . . . . . . . 9 (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹𝑡) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
129, 11eqeq12d 2754 . . . . . . . 8 (𝑡 = (𝒫 𝑠 ∩ Fin) → ((𝐹 𝑡) = (𝐹𝑡) ↔ (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
137, 12imbi12d 345 . . . . . . 7 (𝑡 = (𝒫 𝑠 ∩ Fin) → (((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)) ↔ ((toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset → (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))))
14 simplr 766 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)))
15 inss1 4162 . . . . . . . . . 10 (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑠
16 elpwi 4542 . . . . . . . . . . . 12 (𝑠 ∈ 𝒫 𝑋𝑠𝑋)
1716sspwd 4548 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑋 → 𝒫 𝑠 ⊆ 𝒫 𝑋)
1817adantl 482 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → 𝒫 𝑠 ⊆ 𝒫 𝑋)
1915, 18sstrid 3932 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑋)
20 vpwex 5300 . . . . . . . . . . 11 𝒫 𝑠 ∈ V
2120inex1 5241 . . . . . . . . . 10 (𝒫 𝑠 ∩ Fin) ∈ V
2221elpw 4537 . . . . . . . . 9 ((𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋 ↔ (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑋)
2319, 22sylibr 233 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋)
2423adantlr 712 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋)
2513, 14, 24rspcdva 3562 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → ((toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset → (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
265, 25mpd 15 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
272, 26eqtr3id 2792 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
2827ralrimiva 3103 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
2928ex 413 . 2 (𝐶 ∈ (Moore‘𝑋) → (∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)) → ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
3029imdistani 569 1 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839  cima 5592  cfv 6433  Fincfn 8733  Moorecmre 17291  mrClscmrc 17292  Dirsetcdrs 18012  toInccipo 18245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-tset 16981  df-ple 16982  df-ocomp 16983  df-proset 18013  df-drs 18014  df-poset 18031  df-ipo 18246
This theorem is referenced by:  acsficl  18265  isacs5  18266  isacs4  18267
  Copyright terms: Public domain W3C validator