MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs5lem Structured version   Visualization version   GIF version

Theorem isacs5lem 18615
Description: If closure commutes with directed unions, then the closure of a set is the closure of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isacs5lem ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
Distinct variable groups:   𝐶,𝑠,𝑡   𝐹,𝑠,𝑡   𝑋,𝑠,𝑡

Proof of Theorem isacs5lem
StepHypRef Expression
1 unifpw 9425 . . . . . 6 (𝒫 𝑠 ∩ Fin) = 𝑠
21fveq2i 6923 . . . . 5 (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹𝑠)
3 vex 3492 . . . . . . 7 𝑠 ∈ V
4 fpwipodrs 18610 . . . . . . 7 (𝑠 ∈ V → (toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset)
53, 4mp1i 13 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset)
6 fveq2 6920 . . . . . . . . 9 (𝑡 = (𝒫 𝑠 ∩ Fin) → (toInc‘𝑡) = (toInc‘(𝒫 𝑠 ∩ Fin)))
76eleq1d 2829 . . . . . . . 8 (𝑡 = (𝒫 𝑠 ∩ Fin) → ((toInc‘𝑡) ∈ Dirset ↔ (toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset))
8 unieq 4942 . . . . . . . . . 10 (𝑡 = (𝒫 𝑠 ∩ Fin) → 𝑡 = (𝒫 𝑠 ∩ Fin))
98fveq2d 6924 . . . . . . . . 9 (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹 𝑡) = (𝐹 (𝒫 𝑠 ∩ Fin)))
10 imaeq2 6085 . . . . . . . . . 10 (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹𝑡) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
1110unieqd 4944 . . . . . . . . 9 (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹𝑡) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
129, 11eqeq12d 2756 . . . . . . . 8 (𝑡 = (𝒫 𝑠 ∩ Fin) → ((𝐹 𝑡) = (𝐹𝑡) ↔ (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
137, 12imbi12d 344 . . . . . . 7 (𝑡 = (𝒫 𝑠 ∩ Fin) → (((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)) ↔ ((toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset → (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))))
14 simplr 768 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)))
15 inss1 4258 . . . . . . . . . 10 (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑠
16 elpwi 4629 . . . . . . . . . . . 12 (𝑠 ∈ 𝒫 𝑋𝑠𝑋)
1716sspwd 4635 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑋 → 𝒫 𝑠 ⊆ 𝒫 𝑋)
1817adantl 481 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → 𝒫 𝑠 ⊆ 𝒫 𝑋)
1915, 18sstrid 4020 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑋)
20 vpwex 5395 . . . . . . . . . . 11 𝒫 𝑠 ∈ V
2120inex1 5335 . . . . . . . . . 10 (𝒫 𝑠 ∩ Fin) ∈ V
2221elpw 4626 . . . . . . . . 9 ((𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋 ↔ (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑋)
2319, 22sylibr 234 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋)
2423adantlr 714 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋)
2513, 14, 24rspcdva 3636 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → ((toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset → (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
265, 25mpd 15 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
272, 26eqtr3id 2794 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
2827ralrimiva 3152 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
2928ex 412 . 2 (𝐶 ∈ (Moore‘𝑋) → (∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)) → ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
3029imdistani 568 1 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931  cima 5703  cfv 6573  Fincfn 9003  Moorecmre 17640  mrClscmrc 17641  Dirsetcdrs 18364  toInccipo 18597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-tset 17330  df-ple 17331  df-ocomp 17332  df-proset 18365  df-drs 18366  df-poset 18383  df-ipo 18598
This theorem is referenced by:  acsficl  18617  isacs5  18618  isacs4  18619
  Copyright terms: Public domain W3C validator