MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs5lem Structured version   Visualization version   GIF version

Theorem isacs5lem 17771
Description: If closure commutes with directed unions, then the closure of a set is the closure of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isacs5lem ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
Distinct variable groups:   𝐶,𝑠,𝑡   𝐹,𝑠,𝑡   𝑋,𝑠,𝑡

Proof of Theorem isacs5lem
StepHypRef Expression
1 unifpw 8811 . . . . . 6 (𝒫 𝑠 ∩ Fin) = 𝑠
21fveq2i 6648 . . . . 5 (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹𝑠)
3 vex 3444 . . . . . . 7 𝑠 ∈ V
4 fpwipodrs 17766 . . . . . . 7 (𝑠 ∈ V → (toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset)
53, 4mp1i 13 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset)
6 fveq2 6645 . . . . . . . . 9 (𝑡 = (𝒫 𝑠 ∩ Fin) → (toInc‘𝑡) = (toInc‘(𝒫 𝑠 ∩ Fin)))
76eleq1d 2874 . . . . . . . 8 (𝑡 = (𝒫 𝑠 ∩ Fin) → ((toInc‘𝑡) ∈ Dirset ↔ (toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset))
8 unieq 4811 . . . . . . . . . 10 (𝑡 = (𝒫 𝑠 ∩ Fin) → 𝑡 = (𝒫 𝑠 ∩ Fin))
98fveq2d 6649 . . . . . . . . 9 (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹 𝑡) = (𝐹 (𝒫 𝑠 ∩ Fin)))
10 imaeq2 5892 . . . . . . . . . 10 (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹𝑡) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
1110unieqd 4814 . . . . . . . . 9 (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹𝑡) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
129, 11eqeq12d 2814 . . . . . . . 8 (𝑡 = (𝒫 𝑠 ∩ Fin) → ((𝐹 𝑡) = (𝐹𝑡) ↔ (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
137, 12imbi12d 348 . . . . . . 7 (𝑡 = (𝒫 𝑠 ∩ Fin) → (((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)) ↔ ((toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset → (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))))
14 simplr 768 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)))
15 inss1 4155 . . . . . . . . . 10 (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑠
16 elpwi 4506 . . . . . . . . . . . 12 (𝑠 ∈ 𝒫 𝑋𝑠𝑋)
1716sspwd 4512 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑋 → 𝒫 𝑠 ⊆ 𝒫 𝑋)
1817adantl 485 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → 𝒫 𝑠 ⊆ 𝒫 𝑋)
1915, 18sstrid 3926 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑋)
20 vpwex 5243 . . . . . . . . . . 11 𝒫 𝑠 ∈ V
2120inex1 5185 . . . . . . . . . 10 (𝒫 𝑠 ∩ Fin) ∈ V
2221elpw 4501 . . . . . . . . 9 ((𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋 ↔ (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑋)
2319, 22sylibr 237 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋)
2423adantlr 714 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋)
2513, 14, 24rspcdva 3573 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → ((toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset → (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
265, 25mpd 15 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
272, 26syl5eqr 2847 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
2827ralrimiva 3149 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
2928ex 416 . 2 (𝐶 ∈ (Moore‘𝑋) → (∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)) → ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
3029imdistani 572 1 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cin 3880  wss 3881  𝒫 cpw 4497   cuni 4800  cima 5522  cfv 6324  Fincfn 8492  Moorecmre 16845  mrClscmrc 16846  Dirsetcdrs 17529  toInccipo 17753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-tset 16576  df-ple 16577  df-ocomp 16578  df-proset 17530  df-drs 17531  df-poset 17548  df-ipo 17754
This theorem is referenced by:  acsficl  17773  isacs5  17774  isacs4  17775
  Copyright terms: Public domain W3C validator