MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs5lem Structured version   Visualization version   GIF version

Theorem isacs5lem 18451
Description: If closure commutes with directed unions, then the closure of a set is the closure of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isacs5lem ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
Distinct variable groups:   𝐶,𝑠,𝑡   𝐹,𝑠,𝑡   𝑋,𝑠,𝑡

Proof of Theorem isacs5lem
StepHypRef Expression
1 unifpw 9239 . . . . . 6 (𝒫 𝑠 ∩ Fin) = 𝑠
21fveq2i 6825 . . . . 5 (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹𝑠)
3 vex 3440 . . . . . . 7 𝑠 ∈ V
4 fpwipodrs 18446 . . . . . . 7 (𝑠 ∈ V → (toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset)
53, 4mp1i 13 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset)
6 fveq2 6822 . . . . . . . . 9 (𝑡 = (𝒫 𝑠 ∩ Fin) → (toInc‘𝑡) = (toInc‘(𝒫 𝑠 ∩ Fin)))
76eleq1d 2816 . . . . . . . 8 (𝑡 = (𝒫 𝑠 ∩ Fin) → ((toInc‘𝑡) ∈ Dirset ↔ (toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset))
8 unieq 4870 . . . . . . . . . 10 (𝑡 = (𝒫 𝑠 ∩ Fin) → 𝑡 = (𝒫 𝑠 ∩ Fin))
98fveq2d 6826 . . . . . . . . 9 (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹 𝑡) = (𝐹 (𝒫 𝑠 ∩ Fin)))
10 imaeq2 6005 . . . . . . . . . 10 (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹𝑡) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
1110unieqd 4872 . . . . . . . . 9 (𝑡 = (𝒫 𝑠 ∩ Fin) → (𝐹𝑡) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
129, 11eqeq12d 2747 . . . . . . . 8 (𝑡 = (𝒫 𝑠 ∩ Fin) → ((𝐹 𝑡) = (𝐹𝑡) ↔ (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
137, 12imbi12d 344 . . . . . . 7 (𝑡 = (𝒫 𝑠 ∩ Fin) → (((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)) ↔ ((toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset → (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))))
14 simplr 768 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)))
15 inss1 4187 . . . . . . . . . 10 (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑠
16 elpwi 4557 . . . . . . . . . . . 12 (𝑠 ∈ 𝒫 𝑋𝑠𝑋)
1716sspwd 4563 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑋 → 𝒫 𝑠 ⊆ 𝒫 𝑋)
1817adantl 481 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → 𝒫 𝑠 ⊆ 𝒫 𝑋)
1915, 18sstrid 3946 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑋)
20 vpwex 5315 . . . . . . . . . . 11 𝒫 𝑠 ∈ V
2120inex1 5255 . . . . . . . . . 10 (𝒫 𝑠 ∩ Fin) ∈ V
2221elpw 4554 . . . . . . . . 9 ((𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋 ↔ (𝒫 𝑠 ∩ Fin) ⊆ 𝒫 𝑋)
2319, 22sylibr 234 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋)
2423adantlr 715 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝒫 𝑠 ∩ Fin) ∈ 𝒫 𝒫 𝑋)
2513, 14, 24rspcdva 3578 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → ((toInc‘(𝒫 𝑠 ∩ Fin)) ∈ Dirset → (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
265, 25mpd 15 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝐹 (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
272, 26eqtr3id 2780 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) ∧ 𝑠 ∈ 𝒫 𝑋) → (𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
2827ralrimiva 3124 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
2928ex 412 . 2 (𝐶 ∈ (Moore‘𝑋) → (∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)) → ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
3029imdistani 568 1 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cin 3901  wss 3902  𝒫 cpw 4550   cuni 4859  cima 5619  cfv 6481  Fincfn 8869  Moorecmre 17484  mrClscmrc 17485  Dirsetcdrs 18199  toInccipo 18433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-tset 17180  df-ple 17181  df-ocomp 17182  df-proset 18200  df-drs 18201  df-poset 18219  df-ipo 18434
This theorem is referenced by:  acsficl  18453  isacs5  18454  isacs4  18455
  Copyright terms: Public domain W3C validator