Step | Hyp | Ref
| Expression |
1 | | trust 22930 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑈 ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴)) |
2 | | iscfilu 22989 |
. . . . . 6
⊢ ((𝑈 ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) → (𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴))) ↔ (𝐹 ∈ (fBas‘𝐴) ∧ ∀𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑢))) |
3 | 2 | biimpa 480 |
. . . . 5
⊢ (((𝑈 ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → (𝐹 ∈ (fBas‘𝐴) ∧ ∀𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑢)) |
4 | 1, 3 | stoic3 1778 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → (𝐹 ∈ (fBas‘𝐴) ∧ ∀𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑢)) |
5 | 4 | simpld 498 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐹 ∈ (fBas‘𝐴)) |
6 | | fbsspw 22532 |
. . . . 5
⊢ (𝐹 ∈ (fBas‘𝐴) → 𝐹 ⊆ 𝒫 𝐴) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐹 ⊆ 𝒫 𝐴) |
8 | | simp2 1134 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐴 ⊆ 𝑋) |
9 | 8 | sspwd 4509 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝒫 𝐴 ⊆ 𝒫 𝑋) |
10 | 7, 9 | sstrd 3902 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐹 ⊆ 𝒫 𝑋) |
11 | | simp1 1133 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝑈 ∈ (UnifOn‘𝑋)) |
12 | 11 | elfvexd 6692 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝑋 ∈ V) |
13 | | fbasweak 22565 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝐴) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋)) |
14 | 5, 10, 12, 13 | syl3anc 1368 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐹 ∈ (fBas‘𝑋)) |
15 | | sseq2 3918 |
. . . . . 6
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑎 × 𝑎) ⊆ 𝑢 ↔ (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))) |
16 | 15 | rexbidv 3221 |
. . . . 5
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → (∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑢 ↔ ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))) |
17 | 4 | simprd 499 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → ∀𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑢) |
18 | 17 | adantr 484 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → ∀𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑢) |
19 | 11 | adantr 484 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → 𝑈 ∈ (UnifOn‘𝑋)) |
20 | 12 | adantr 484 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → 𝑋 ∈ V) |
21 | 8 | adantr 484 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → 𝐴 ⊆ 𝑋) |
22 | 20, 21 | ssexd 5194 |
. . . . . . 7
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → 𝐴 ∈ V) |
23 | 22, 22 | xpexd 7472 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → (𝐴 × 𝐴) ∈ V) |
24 | | simpr 488 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → 𝑣 ∈ 𝑈) |
25 | | elrestr 16760 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V ∧ 𝑣 ∈ 𝑈) → (𝑣 ∩ (𝐴 × 𝐴)) ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
26 | 19, 23, 24, 25 | syl3anc 1368 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → (𝑣 ∩ (𝐴 × 𝐴)) ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
27 | 16, 18, 26 | rspcdva 3543 |
. . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴))) |
28 | | inss1 4133 |
. . . . . 6
⊢ (𝑣 ∩ (𝐴 × 𝐴)) ⊆ 𝑣 |
29 | | sstr 3900 |
. . . . . 6
⊢ (((𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)) ∧ (𝑣 ∩ (𝐴 × 𝐴)) ⊆ 𝑣) → (𝑎 × 𝑎) ⊆ 𝑣) |
30 | 28, 29 | mpan2 690 |
. . . . 5
⊢ ((𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)) → (𝑎 × 𝑎) ⊆ 𝑣) |
31 | 30 | reximi 3171 |
. . . 4
⊢
(∃𝑎 ∈
𝐹 (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)) → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣) |
32 | 27, 31 | syl 17 |
. . 3
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣) |
33 | 32 | ralrimiva 3113 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣) |
34 | | iscfilu 22989 |
. . 3
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu‘𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣))) |
35 | 34 | 3ad2ant1 1130 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → (𝐹 ∈ (CauFilu‘𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣))) |
36 | 14, 33, 35 | mpbir2and 712 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐹 ∈ (CauFilu‘𝑈)) |