MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfiluweak Structured version   Visualization version   GIF version

Theorem cfiluweak 23355
Description: A Cauchy filter base is also a Cauchy filter base on any coarser uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.)
Assertion
Ref Expression
cfiluweak ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ∈ (CauFilu𝑈))

Proof of Theorem cfiluweak
Dummy variables 𝑢 𝑎 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trust 23289 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
2 iscfilu 23348 . . . . . 6 ((𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) → (𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))) ↔ (𝐹 ∈ (fBas‘𝐴) ∧ ∀𝑢 ∈ (𝑈t (𝐴 × 𝐴))∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢)))
32biimpa 476 . . . . 5 (((𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) ∧ 𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → (𝐹 ∈ (fBas‘𝐴) ∧ ∀𝑢 ∈ (𝑈t (𝐴 × 𝐴))∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢))
41, 3stoic3 1780 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → (𝐹 ∈ (fBas‘𝐴) ∧ ∀𝑢 ∈ (𝑈t (𝐴 × 𝐴))∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢))
54simpld 494 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ∈ (fBas‘𝐴))
6 fbsspw 22891 . . . . 5 (𝐹 ∈ (fBas‘𝐴) → 𝐹 ⊆ 𝒫 𝐴)
75, 6syl 17 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ⊆ 𝒫 𝐴)
8 simp2 1135 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐴𝑋)
98sspwd 4545 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝒫 𝐴 ⊆ 𝒫 𝑋)
107, 9sstrd 3927 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ⊆ 𝒫 𝑋)
11 simp1 1134 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝑈 ∈ (UnifOn‘𝑋))
1211elfvexd 6790 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝑋 ∈ V)
13 fbasweak 22924 . . 3 ((𝐹 ∈ (fBas‘𝐴) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
145, 10, 12, 13syl3anc 1369 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ∈ (fBas‘𝑋))
15 sseq2 3943 . . . . . 6 (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑎 × 𝑎) ⊆ 𝑢 ↔ (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴))))
1615rexbidv 3225 . . . . 5 (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → (∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢 ↔ ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴))))
174simprd 495 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → ∀𝑢 ∈ (𝑈t (𝐴 × 𝐴))∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢)
1817adantr 480 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → ∀𝑢 ∈ (𝑈t (𝐴 × 𝐴))∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢)
1911adantr 480 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → 𝑈 ∈ (UnifOn‘𝑋))
2012adantr 480 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → 𝑋 ∈ V)
218adantr 480 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → 𝐴𝑋)
2220, 21ssexd 5243 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → 𝐴 ∈ V)
2322, 22xpexd 7579 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → (𝐴 × 𝐴) ∈ V)
24 simpr 484 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → 𝑣𝑈)
25 elrestr 17056 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V ∧ 𝑣𝑈) → (𝑣 ∩ (𝐴 × 𝐴)) ∈ (𝑈t (𝐴 × 𝐴)))
2619, 23, 24, 25syl3anc 1369 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → (𝑣 ∩ (𝐴 × 𝐴)) ∈ (𝑈t (𝐴 × 𝐴)))
2716, 18, 26rspcdva 3554 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))
28 inss1 4159 . . . . . 6 (𝑣 ∩ (𝐴 × 𝐴)) ⊆ 𝑣
29 sstr 3925 . . . . . 6 (((𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)) ∧ (𝑣 ∩ (𝐴 × 𝐴)) ⊆ 𝑣) → (𝑎 × 𝑎) ⊆ 𝑣)
3028, 29mpan2 687 . . . . 5 ((𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)) → (𝑎 × 𝑎) ⊆ 𝑣)
3130reximi 3174 . . . 4 (∃𝑎𝐹 (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3227, 31syl 17 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3332ralrimiva 3107 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
34 iscfilu 23348 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
35343ad2ant1 1131 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
3614, 33, 35mpbir2and 709 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ∈ (CauFilu𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530   × cxp 5578  cfv 6418  (class class class)co 7255  t crest 17048  fBascfbas 20498  UnifOncust 23259  CauFiluccfilu 23346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-rest 17050  df-fbas 20507  df-ust 23260  df-cfilu 23347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator