MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfiluweak Structured version   Visualization version   GIF version

Theorem cfiluweak 24207
Description: A Cauchy filter base is also a Cauchy filter base on any coarser uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.)
Assertion
Ref Expression
cfiluweak ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ∈ (CauFilu𝑈))

Proof of Theorem cfiluweak
Dummy variables 𝑢 𝑎 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trust 24142 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
2 iscfilu 24200 . . . . . 6 ((𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) → (𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))) ↔ (𝐹 ∈ (fBas‘𝐴) ∧ ∀𝑢 ∈ (𝑈t (𝐴 × 𝐴))∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢)))
32biimpa 476 . . . . 5 (((𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) ∧ 𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → (𝐹 ∈ (fBas‘𝐴) ∧ ∀𝑢 ∈ (𝑈t (𝐴 × 𝐴))∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢))
41, 3stoic3 1777 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → (𝐹 ∈ (fBas‘𝐴) ∧ ∀𝑢 ∈ (𝑈t (𝐴 × 𝐴))∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢))
54simpld 494 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ∈ (fBas‘𝐴))
6 fbsspw 23745 . . . . 5 (𝐹 ∈ (fBas‘𝐴) → 𝐹 ⊆ 𝒫 𝐴)
75, 6syl 17 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ⊆ 𝒫 𝐴)
8 simp2 1137 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐴𝑋)
98sspwd 4563 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝒫 𝐴 ⊆ 𝒫 𝑋)
107, 9sstrd 3945 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ⊆ 𝒫 𝑋)
11 simp1 1136 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝑈 ∈ (UnifOn‘𝑋))
1211elfvexd 6858 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝑋 ∈ V)
13 fbasweak 23778 . . 3 ((𝐹 ∈ (fBas‘𝐴) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
145, 10, 12, 13syl3anc 1373 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ∈ (fBas‘𝑋))
15 sseq2 3961 . . . . . 6 (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑎 × 𝑎) ⊆ 𝑢 ↔ (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴))))
1615rexbidv 3156 . . . . 5 (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → (∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢 ↔ ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴))))
174simprd 495 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → ∀𝑢 ∈ (𝑈t (𝐴 × 𝐴))∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢)
1817adantr 480 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → ∀𝑢 ∈ (𝑈t (𝐴 × 𝐴))∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢)
1911adantr 480 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → 𝑈 ∈ (UnifOn‘𝑋))
2012adantr 480 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → 𝑋 ∈ V)
218adantr 480 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → 𝐴𝑋)
2220, 21ssexd 5262 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → 𝐴 ∈ V)
2322, 22xpexd 7684 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → (𝐴 × 𝐴) ∈ V)
24 simpr 484 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → 𝑣𝑈)
25 elrestr 17329 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V ∧ 𝑣𝑈) → (𝑣 ∩ (𝐴 × 𝐴)) ∈ (𝑈t (𝐴 × 𝐴)))
2619, 23, 24, 25syl3anc 1373 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → (𝑣 ∩ (𝐴 × 𝐴)) ∈ (𝑈t (𝐴 × 𝐴)))
2716, 18, 26rspcdva 3578 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))
28 inss1 4187 . . . . . 6 (𝑣 ∩ (𝐴 × 𝐴)) ⊆ 𝑣
29 sstr 3943 . . . . . 6 (((𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)) ∧ (𝑣 ∩ (𝐴 × 𝐴)) ⊆ 𝑣) → (𝑎 × 𝑎) ⊆ 𝑣)
3028, 29mpan2 691 . . . . 5 ((𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)) → (𝑎 × 𝑎) ⊆ 𝑣)
3130reximi 3070 . . . 4 (∃𝑎𝐹 (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3227, 31syl 17 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3332ralrimiva 3124 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
34 iscfilu 24200 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
35343ad2ant1 1133 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
3614, 33, 35mpbir2and 713 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ∈ (CauFilu𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cin 3901  wss 3902  𝒫 cpw 4550   × cxp 5614  cfv 6481  (class class class)co 7346  t crest 17321  fBascfbas 21277  UnifOncust 24113  CauFiluccfilu 24198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-rest 17323  df-fbas 21286  df-ust 24114  df-cfilu 24199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator