MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfiluweak Structured version   Visualization version   GIF version

Theorem cfiluweak 22906
Description: A Cauchy filter base is also a Cauchy filter base on any coarser uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.)
Assertion
Ref Expression
cfiluweak ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ∈ (CauFilu𝑈))

Proof of Theorem cfiluweak
Dummy variables 𝑢 𝑎 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trust 22840 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
2 iscfilu 22899 . . . . . 6 ((𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) → (𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴))) ↔ (𝐹 ∈ (fBas‘𝐴) ∧ ∀𝑢 ∈ (𝑈t (𝐴 × 𝐴))∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢)))
32biimpa 479 . . . . 5 (((𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) ∧ 𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → (𝐹 ∈ (fBas‘𝐴) ∧ ∀𝑢 ∈ (𝑈t (𝐴 × 𝐴))∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢))
41, 3stoic3 1777 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → (𝐹 ∈ (fBas‘𝐴) ∧ ∀𝑢 ∈ (𝑈t (𝐴 × 𝐴))∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢))
54simpld 497 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ∈ (fBas‘𝐴))
6 fbsspw 22442 . . . . 5 (𝐹 ∈ (fBas‘𝐴) → 𝐹 ⊆ 𝒫 𝐴)
75, 6syl 17 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ⊆ 𝒫 𝐴)
8 simp2 1133 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐴𝑋)
98sspwd 4556 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝒫 𝐴 ⊆ 𝒫 𝑋)
107, 9sstrd 3979 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ⊆ 𝒫 𝑋)
11 simp1 1132 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝑈 ∈ (UnifOn‘𝑋))
1211elfvexd 6706 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝑋 ∈ V)
13 fbasweak 22475 . . 3 ((𝐹 ∈ (fBas‘𝐴) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋))
145, 10, 12, 13syl3anc 1367 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ∈ (fBas‘𝑋))
15 sseq2 3995 . . . . . 6 (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑎 × 𝑎) ⊆ 𝑢 ↔ (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴))))
1615rexbidv 3299 . . . . 5 (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → (∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢 ↔ ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴))))
174simprd 498 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → ∀𝑢 ∈ (𝑈t (𝐴 × 𝐴))∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢)
1817adantr 483 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → ∀𝑢 ∈ (𝑈t (𝐴 × 𝐴))∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑢)
1911adantr 483 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → 𝑈 ∈ (UnifOn‘𝑋))
2012adantr 483 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → 𝑋 ∈ V)
218adantr 483 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → 𝐴𝑋)
2220, 21ssexd 5230 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → 𝐴 ∈ V)
2322, 22xpexd 7476 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → (𝐴 × 𝐴) ∈ V)
24 simpr 487 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → 𝑣𝑈)
25 elrestr 16704 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V ∧ 𝑣𝑈) → (𝑣 ∩ (𝐴 × 𝐴)) ∈ (𝑈t (𝐴 × 𝐴)))
2619, 23, 24, 25syl3anc 1367 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → (𝑣 ∩ (𝐴 × 𝐴)) ∈ (𝑈t (𝐴 × 𝐴)))
2716, 18, 26rspcdva 3627 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))
28 inss1 4207 . . . . . 6 (𝑣 ∩ (𝐴 × 𝐴)) ⊆ 𝑣
29 sstr 3977 . . . . . 6 (((𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)) ∧ (𝑣 ∩ (𝐴 × 𝐴)) ⊆ 𝑣) → (𝑎 × 𝑎) ⊆ 𝑣)
3028, 29mpan2 689 . . . . 5 ((𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)) → (𝑎 × 𝑎) ⊆ 𝑣)
3130reximi 3245 . . . 4 (∃𝑎𝐹 (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3227, 31syl 17 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) ∧ 𝑣𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
3332ralrimiva 3184 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
34 iscfilu 22899 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
35343ad2ant1 1129 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
3614, 33, 35mpbir2and 711 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋𝐹 ∈ (CauFilu‘(𝑈t (𝐴 × 𝐴)))) → 𝐹 ∈ (CauFilu𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  cin 3937  wss 3938  𝒫 cpw 4541   × cxp 5555  cfv 6357  (class class class)co 7158  t crest 16696  fBascfbas 20535  UnifOncust 22810  CauFiluccfilu 22897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-rest 16698  df-fbas 20544  df-ust 22811  df-cfilu 22898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator