Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem2 Structured version   Visualization version   GIF version

Theorem aomclem2 40860
Description: Lemma for dfac11 40867. Successor case 2, a choice function for subsets of (𝑅1‘dom 𝑧). (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
aomclem2.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem2.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem2.on (𝜑 → dom 𝑧 ∈ On)
aomclem2.su (𝜑 → dom 𝑧 = suc dom 𝑧)
aomclem2.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
aomclem2.a (𝜑𝐴 ∈ On)
aomclem2.za (𝜑 → dom 𝑧𝐴)
aomclem2.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem2 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑏,𝑐,𝑑)   𝐴(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem2
StepHypRef Expression
1 vex 3434 . . . . 5 𝑎 ∈ V
2 aomclem2.y . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
3 aomclem2.on . . . . . . . . . . . . . 14 (𝜑 → dom 𝑧 ∈ On)
4 aomclem2.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ On)
53, 4jca 511 . . . . . . . . . . . . 13 (𝜑 → (dom 𝑧 ∈ On ∧ 𝐴 ∈ On))
6 aomclem2.za . . . . . . . . . . . . 13 (𝜑 → dom 𝑧𝐴)
7 r1ord3 9524 . . . . . . . . . . . . 13 ((dom 𝑧 ∈ On ∧ 𝐴 ∈ On) → (dom 𝑧𝐴 → (𝑅1‘dom 𝑧) ⊆ (𝑅1𝐴)))
85, 6, 7sylc 65 . . . . . . . . . . . 12 (𝜑 → (𝑅1‘dom 𝑧) ⊆ (𝑅1𝐴))
98sspwd 4553 . . . . . . . . . . 11 (𝜑 → 𝒫 (𝑅1‘dom 𝑧) ⊆ 𝒫 (𝑅1𝐴))
109sseld 3924 . . . . . . . . . 10 (𝜑 → (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → 𝑎 ∈ 𝒫 (𝑅1𝐴)))
11 rsp 3131 . . . . . . . . . 10 (∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) → (𝑎 ∈ 𝒫 (𝑅1𝐴) → (𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))))
122, 10, 11sylsyld 61 . . . . . . . . 9 (𝜑 → (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → (𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))))
13123imp 1109 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))
1413eldifad 3903 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ∈ (𝒫 𝑎 ∩ Fin))
15 inss1 4167 . . . . . . . . 9 (𝒫 𝑎 ∩ Fin) ⊆ 𝒫 𝑎
1615sseli 3921 . . . . . . . 8 ((𝑦𝑎) ∈ (𝒫 𝑎 ∩ Fin) → (𝑦𝑎) ∈ 𝒫 𝑎)
1716elpwid 4549 . . . . . . 7 ((𝑦𝑎) ∈ (𝒫 𝑎 ∩ Fin) → (𝑦𝑎) ⊆ 𝑎)
1814, 17syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ⊆ 𝑎)
19 aomclem2.b . . . . . . . . 9 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
20 aomclem2.su . . . . . . . . 9 (𝜑 → dom 𝑧 = suc dom 𝑧)
21 aomclem2.we . . . . . . . . 9 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
2219, 3, 20, 21aomclem1 40859 . . . . . . . 8 (𝜑𝐵 Or (𝑅1‘dom 𝑧))
23223ad2ant1 1131 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → 𝐵 Or (𝑅1‘dom 𝑧))
24 inss2 4168 . . . . . . . 8 (𝒫 𝑎 ∩ Fin) ⊆ Fin
2524, 14sselid 3923 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ∈ Fin)
26 eldifsni 4728 . . . . . . . 8 ((𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}) → (𝑦𝑎) ≠ ∅)
2713, 26syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ≠ ∅)
28 elpwi 4547 . . . . . . . . 9 (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → 𝑎 ⊆ (𝑅1‘dom 𝑧))
29283ad2ant2 1132 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ (𝑅1‘dom 𝑧))
3018, 29sstrd 3935 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ⊆ (𝑅1‘dom 𝑧))
31 fisupcl 9189 . . . . . . 7 ((𝐵 Or (𝑅1‘dom 𝑧) ∧ ((𝑦𝑎) ∈ Fin ∧ (𝑦𝑎) ≠ ∅ ∧ (𝑦𝑎) ⊆ (𝑅1‘dom 𝑧))) → sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ (𝑦𝑎))
3223, 25, 27, 30, 31syl13anc 1370 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ (𝑦𝑎))
3318, 32sseldd 3926 . . . . 5 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ 𝑎)
34 aomclem2.c . . . . . 6 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
3534fvmpt2 6880 . . . . 5 ((𝑎 ∈ V ∧ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ 𝑎) → (𝐶𝑎) = sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
361, 33, 35sylancr 586 . . . 4 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝐶𝑎) = sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
3736, 33eqeltrd 2840 . . 3 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝐶𝑎) ∈ 𝑎)
38373exp 1117 . 2 (𝜑 → (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → (𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎)))
3938ralrimiv 3108 1 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wral 3065  wrex 3066  Vcvv 3430  cdif 3888  cin 3890  wss 3891  c0 4261  𝒫 cpw 4538  {csn 4566   cuni 4844   class class class wbr 5078  {copab 5140  cmpt 5161   Or wor 5501   We wwe 5542  dom cdm 5588  Oncon0 6263  suc csuc 6265  cfv 6430  Fincfn 8707  supcsup 9160  𝑅1cr1 9504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-map 8591  df-en 8708  df-fin 8711  df-sup 9162  df-r1 9506
This theorem is referenced by:  aomclem3  40861
  Copyright terms: Public domain W3C validator