Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem2 Structured version   Visualization version   GIF version

Theorem aomclem2 43088
Description: Lemma for dfac11 43095. Successor case 2, a choice function for subsets of (𝑅1‘dom 𝑧). (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
aomclem2.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem2.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem2.on (𝜑 → dom 𝑧 ∈ On)
aomclem2.su (𝜑 → dom 𝑧 = suc dom 𝑧)
aomclem2.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
aomclem2.a (𝜑𝐴 ∈ On)
aomclem2.za (𝜑 → dom 𝑧𝐴)
aomclem2.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem2 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑏,𝑐,𝑑)   𝐴(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem2
StepHypRef Expression
1 vex 3440 . . . . 5 𝑎 ∈ V
2 aomclem2.y . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
3 aomclem2.on . . . . . . . . . . . . . 14 (𝜑 → dom 𝑧 ∈ On)
4 aomclem2.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ On)
53, 4jca 511 . . . . . . . . . . . . 13 (𝜑 → (dom 𝑧 ∈ On ∧ 𝐴 ∈ On))
6 aomclem2.za . . . . . . . . . . . . 13 (𝜑 → dom 𝑧𝐴)
7 r1ord3 9670 . . . . . . . . . . . . 13 ((dom 𝑧 ∈ On ∧ 𝐴 ∈ On) → (dom 𝑧𝐴 → (𝑅1‘dom 𝑧) ⊆ (𝑅1𝐴)))
85, 6, 7sylc 65 . . . . . . . . . . . 12 (𝜑 → (𝑅1‘dom 𝑧) ⊆ (𝑅1𝐴))
98sspwd 4558 . . . . . . . . . . 11 (𝜑 → 𝒫 (𝑅1‘dom 𝑧) ⊆ 𝒫 (𝑅1𝐴))
109sseld 3928 . . . . . . . . . 10 (𝜑 → (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → 𝑎 ∈ 𝒫 (𝑅1𝐴)))
11 rsp 3220 . . . . . . . . . 10 (∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) → (𝑎 ∈ 𝒫 (𝑅1𝐴) → (𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))))
122, 10, 11sylsyld 61 . . . . . . . . 9 (𝜑 → (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → (𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))))
13123imp 1110 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))
1413eldifad 3909 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ∈ (𝒫 𝑎 ∩ Fin))
15 inss1 4182 . . . . . . . . 9 (𝒫 𝑎 ∩ Fin) ⊆ 𝒫 𝑎
1615sseli 3925 . . . . . . . 8 ((𝑦𝑎) ∈ (𝒫 𝑎 ∩ Fin) → (𝑦𝑎) ∈ 𝒫 𝑎)
1716elpwid 4554 . . . . . . 7 ((𝑦𝑎) ∈ (𝒫 𝑎 ∩ Fin) → (𝑦𝑎) ⊆ 𝑎)
1814, 17syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ⊆ 𝑎)
19 aomclem2.b . . . . . . . . 9 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
20 aomclem2.su . . . . . . . . 9 (𝜑 → dom 𝑧 = suc dom 𝑧)
21 aomclem2.we . . . . . . . . 9 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
2219, 3, 20, 21aomclem1 43087 . . . . . . . 8 (𝜑𝐵 Or (𝑅1‘dom 𝑧))
23223ad2ant1 1133 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → 𝐵 Or (𝑅1‘dom 𝑧))
24 inss2 4183 . . . . . . . 8 (𝒫 𝑎 ∩ Fin) ⊆ Fin
2524, 14sselid 3927 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ∈ Fin)
26 eldifsni 4737 . . . . . . . 8 ((𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}) → (𝑦𝑎) ≠ ∅)
2713, 26syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ≠ ∅)
28 elpwi 4552 . . . . . . . . 9 (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → 𝑎 ⊆ (𝑅1‘dom 𝑧))
29283ad2ant2 1134 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ (𝑅1‘dom 𝑧))
3018, 29sstrd 3940 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ⊆ (𝑅1‘dom 𝑧))
31 fisupcl 9349 . . . . . . 7 ((𝐵 Or (𝑅1‘dom 𝑧) ∧ ((𝑦𝑎) ∈ Fin ∧ (𝑦𝑎) ≠ ∅ ∧ (𝑦𝑎) ⊆ (𝑅1‘dom 𝑧))) → sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ (𝑦𝑎))
3223, 25, 27, 30, 31syl13anc 1374 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ (𝑦𝑎))
3318, 32sseldd 3930 . . . . 5 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ 𝑎)
34 aomclem2.c . . . . . 6 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
3534fvmpt2 6935 . . . . 5 ((𝑎 ∈ V ∧ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ 𝑎) → (𝐶𝑎) = sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
361, 33, 35sylancr 587 . . . 4 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝐶𝑎) = sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
3736, 33eqeltrd 2831 . . 3 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝐶𝑎) ∈ 𝑎)
38373exp 1119 . 2 (𝜑 → (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → (𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎)))
3938ralrimiv 3123 1 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  cin 3896  wss 3897  c0 4278  𝒫 cpw 4545  {csn 4571   cuni 4854   class class class wbr 5086  {copab 5148  cmpt 5167   Or wor 5518   We wwe 5563  dom cdm 5611  Oncon0 6301  suc csuc 6303  cfv 6476  Fincfn 8864  supcsup 9319  𝑅1cr1 9650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-map 8747  df-en 8865  df-fin 8868  df-sup 9321  df-r1 9652
This theorem is referenced by:  aomclem3  43089
  Copyright terms: Public domain W3C validator