Proof of Theorem aomclem2
Step | Hyp | Ref
| Expression |
1 | | vex 3436 |
. . . . 5
⊢ 𝑎 ∈ V |
2 | | aomclem2.y |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑎 ∈ 𝒫
(𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖
{∅}))) |
3 | | aomclem2.on |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝑧 ∈ On) |
4 | | aomclem2.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ On) |
5 | 3, 4 | jca 512 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (dom 𝑧 ∈ On ∧ 𝐴 ∈ On)) |
6 | | aomclem2.za |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom 𝑧 ⊆ 𝐴) |
7 | | r1ord3 9540 |
. . . . . . . . . . . . 13
⊢ ((dom
𝑧 ∈ On ∧ 𝐴 ∈ On) → (dom 𝑧 ⊆ 𝐴 → (𝑅1‘dom
𝑧) ⊆
(𝑅1‘𝐴))) |
8 | 5, 6, 7 | sylc 65 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(𝑅1‘dom 𝑧) ⊆ (𝑅1‘𝐴)) |
9 | 8 | sspwd 4548 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝒫
(𝑅1‘dom 𝑧) ⊆ 𝒫
(𝑅1‘𝐴)) |
10 | 9 | sseld 3920 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) → 𝑎 ∈ 𝒫
(𝑅1‘𝐴))) |
11 | | rsp 3131 |
. . . . . . . . . 10
⊢
(∀𝑎 ∈
𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) → (𝑎 ∈ 𝒫
(𝑅1‘𝐴) → (𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖
{∅})))) |
12 | 2, 10, 11 | sylsyld 61 |
. . . . . . . . 9
⊢ (𝜑 → (𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) → (𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖
{∅})))) |
13 | 12 | 3imp 1110 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖
{∅})) |
14 | 13 | eldifad 3899 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦‘𝑎) ∈ (𝒫 𝑎 ∩ Fin)) |
15 | | inss1 4162 |
. . . . . . . . 9
⊢
(𝒫 𝑎 ∩
Fin) ⊆ 𝒫 𝑎 |
16 | 15 | sseli 3917 |
. . . . . . . 8
⊢ ((𝑦‘𝑎) ∈ (𝒫 𝑎 ∩ Fin) → (𝑦‘𝑎) ∈ 𝒫 𝑎) |
17 | 16 | elpwid 4544 |
. . . . . . 7
⊢ ((𝑦‘𝑎) ∈ (𝒫 𝑎 ∩ Fin) → (𝑦‘𝑎) ⊆ 𝑎) |
18 | 14, 17 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦‘𝑎) ⊆ 𝑎) |
19 | | aomclem2.b |
. . . . . . . . 9
⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} |
20 | | aomclem2.su |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑧 = suc ∪ dom 𝑧) |
21 | | aomclem2.we |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧‘𝑎) We (𝑅1‘𝑎)) |
22 | 19, 3, 20, 21 | aomclem1 40879 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 Or (𝑅1‘dom 𝑧)) |
23 | 22 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → 𝐵 Or (𝑅1‘dom 𝑧)) |
24 | | inss2 4163 |
. . . . . . . 8
⊢
(𝒫 𝑎 ∩
Fin) ⊆ Fin |
25 | 24, 14 | sselid 3919 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦‘𝑎) ∈ Fin) |
26 | | eldifsni 4723 |
. . . . . . . 8
⊢ ((𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}) → (𝑦‘𝑎) ≠ ∅) |
27 | 13, 26 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦‘𝑎) ≠ ∅) |
28 | | elpwi 4542 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) → 𝑎 ⊆ (𝑅1‘dom
𝑧)) |
29 | 28 | 3ad2ant2 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ (𝑅1‘dom
𝑧)) |
30 | 18, 29 | sstrd 3931 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦‘𝑎) ⊆ (𝑅1‘dom
𝑧)) |
31 | | fisupcl 9228 |
. . . . . . 7
⊢ ((𝐵 Or
(𝑅1‘dom 𝑧) ∧ ((𝑦‘𝑎) ∈ Fin ∧ (𝑦‘𝑎) ≠ ∅ ∧ (𝑦‘𝑎) ⊆ (𝑅1‘dom
𝑧))) → sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ (𝑦‘𝑎)) |
32 | 23, 25, 27, 30, 31 | syl13anc 1371 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ (𝑦‘𝑎)) |
33 | 18, 32 | sseldd 3922 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ 𝑎) |
34 | | aomclem2.c |
. . . . . 6
⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) |
35 | 34 | fvmpt2 6886 |
. . . . 5
⊢ ((𝑎 ∈ V ∧ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ 𝑎) → (𝐶‘𝑎) = sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) |
36 | 1, 33, 35 | sylancr 587 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝐶‘𝑎) = sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) |
37 | 36, 33 | eqeltrd 2839 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝐶‘𝑎) ∈ 𝑎) |
38 | 37 | 3exp 1118 |
. 2
⊢ (𝜑 → (𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧) → (𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎))) |
39 | 38 | ralrimiv 3102 |
1
⊢ (𝜑 → ∀𝑎 ∈ 𝒫
(𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶‘𝑎) ∈ 𝑎)) |