Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem2 Structured version   Visualization version   GIF version

Theorem aomclem2 43012
Description: Lemma for dfac11 43019. Successor case 2, a choice function for subsets of (𝑅1‘dom 𝑧). (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
aomclem2.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem2.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem2.on (𝜑 → dom 𝑧 ∈ On)
aomclem2.su (𝜑 → dom 𝑧 = suc dom 𝑧)
aomclem2.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
aomclem2.a (𝜑𝐴 ∈ On)
aomclem2.za (𝜑 → dom 𝑧𝐴)
aomclem2.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem2 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑏,𝑐,𝑑)   𝐴(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem2
StepHypRef Expression
1 vex 3492 . . . . 5 𝑎 ∈ V
2 aomclem2.y . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
3 aomclem2.on . . . . . . . . . . . . . 14 (𝜑 → dom 𝑧 ∈ On)
4 aomclem2.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ On)
53, 4jca 511 . . . . . . . . . . . . 13 (𝜑 → (dom 𝑧 ∈ On ∧ 𝐴 ∈ On))
6 aomclem2.za . . . . . . . . . . . . 13 (𝜑 → dom 𝑧𝐴)
7 r1ord3 9851 . . . . . . . . . . . . 13 ((dom 𝑧 ∈ On ∧ 𝐴 ∈ On) → (dom 𝑧𝐴 → (𝑅1‘dom 𝑧) ⊆ (𝑅1𝐴)))
85, 6, 7sylc 65 . . . . . . . . . . . 12 (𝜑 → (𝑅1‘dom 𝑧) ⊆ (𝑅1𝐴))
98sspwd 4635 . . . . . . . . . . 11 (𝜑 → 𝒫 (𝑅1‘dom 𝑧) ⊆ 𝒫 (𝑅1𝐴))
109sseld 4007 . . . . . . . . . 10 (𝜑 → (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → 𝑎 ∈ 𝒫 (𝑅1𝐴)))
11 rsp 3253 . . . . . . . . . 10 (∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) → (𝑎 ∈ 𝒫 (𝑅1𝐴) → (𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))))
122, 10, 11sylsyld 61 . . . . . . . . 9 (𝜑 → (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → (𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))))
13123imp 1111 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))
1413eldifad 3988 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ∈ (𝒫 𝑎 ∩ Fin))
15 inss1 4258 . . . . . . . . 9 (𝒫 𝑎 ∩ Fin) ⊆ 𝒫 𝑎
1615sseli 4004 . . . . . . . 8 ((𝑦𝑎) ∈ (𝒫 𝑎 ∩ Fin) → (𝑦𝑎) ∈ 𝒫 𝑎)
1716elpwid 4631 . . . . . . 7 ((𝑦𝑎) ∈ (𝒫 𝑎 ∩ Fin) → (𝑦𝑎) ⊆ 𝑎)
1814, 17syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ⊆ 𝑎)
19 aomclem2.b . . . . . . . . 9 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
20 aomclem2.su . . . . . . . . 9 (𝜑 → dom 𝑧 = suc dom 𝑧)
21 aomclem2.we . . . . . . . . 9 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
2219, 3, 20, 21aomclem1 43011 . . . . . . . 8 (𝜑𝐵 Or (𝑅1‘dom 𝑧))
23223ad2ant1 1133 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → 𝐵 Or (𝑅1‘dom 𝑧))
24 inss2 4259 . . . . . . . 8 (𝒫 𝑎 ∩ Fin) ⊆ Fin
2524, 14sselid 4006 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ∈ Fin)
26 eldifsni 4815 . . . . . . . 8 ((𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}) → (𝑦𝑎) ≠ ∅)
2713, 26syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ≠ ∅)
28 elpwi 4629 . . . . . . . . 9 (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → 𝑎 ⊆ (𝑅1‘dom 𝑧))
29283ad2ant2 1134 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ (𝑅1‘dom 𝑧))
3018, 29sstrd 4019 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ⊆ (𝑅1‘dom 𝑧))
31 fisupcl 9538 . . . . . . 7 ((𝐵 Or (𝑅1‘dom 𝑧) ∧ ((𝑦𝑎) ∈ Fin ∧ (𝑦𝑎) ≠ ∅ ∧ (𝑦𝑎) ⊆ (𝑅1‘dom 𝑧))) → sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ (𝑦𝑎))
3223, 25, 27, 30, 31syl13anc 1372 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ (𝑦𝑎))
3318, 32sseldd 4009 . . . . 5 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ 𝑎)
34 aomclem2.c . . . . . 6 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
3534fvmpt2 7040 . . . . 5 ((𝑎 ∈ V ∧ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ 𝑎) → (𝐶𝑎) = sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
361, 33, 35sylancr 586 . . . 4 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝐶𝑎) = sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
3736, 33eqeltrd 2844 . . 3 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝐶𝑎) ∈ 𝑎)
38373exp 1119 . 2 (𝜑 → (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → (𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎)))
3938ralrimiv 3151 1 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931   class class class wbr 5166  {copab 5228  cmpt 5249   Or wor 5606   We wwe 5651  dom cdm 5700  Oncon0 6395  suc csuc 6397  cfv 6573  Fincfn 9003  supcsup 9509  𝑅1cr1 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-map 8886  df-en 9004  df-fin 9007  df-sup 9511  df-r1 9833
This theorem is referenced by:  aomclem3  43013
  Copyright terms: Public domain W3C validator