Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem2 Structured version   Visualization version   GIF version

Theorem aomclem2 40880
Description: Lemma for dfac11 40887. Successor case 2, a choice function for subsets of (𝑅1‘dom 𝑧). (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
aomclem2.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem2.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem2.on (𝜑 → dom 𝑧 ∈ On)
aomclem2.su (𝜑 → dom 𝑧 = suc dom 𝑧)
aomclem2.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
aomclem2.a (𝜑𝐴 ∈ On)
aomclem2.za (𝜑 → dom 𝑧𝐴)
aomclem2.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem2 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑏,𝑐,𝑑)   𝐴(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem2
StepHypRef Expression
1 vex 3436 . . . . 5 𝑎 ∈ V
2 aomclem2.y . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
3 aomclem2.on . . . . . . . . . . . . . 14 (𝜑 → dom 𝑧 ∈ On)
4 aomclem2.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ On)
53, 4jca 512 . . . . . . . . . . . . 13 (𝜑 → (dom 𝑧 ∈ On ∧ 𝐴 ∈ On))
6 aomclem2.za . . . . . . . . . . . . 13 (𝜑 → dom 𝑧𝐴)
7 r1ord3 9540 . . . . . . . . . . . . 13 ((dom 𝑧 ∈ On ∧ 𝐴 ∈ On) → (dom 𝑧𝐴 → (𝑅1‘dom 𝑧) ⊆ (𝑅1𝐴)))
85, 6, 7sylc 65 . . . . . . . . . . . 12 (𝜑 → (𝑅1‘dom 𝑧) ⊆ (𝑅1𝐴))
98sspwd 4548 . . . . . . . . . . 11 (𝜑 → 𝒫 (𝑅1‘dom 𝑧) ⊆ 𝒫 (𝑅1𝐴))
109sseld 3920 . . . . . . . . . 10 (𝜑 → (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → 𝑎 ∈ 𝒫 (𝑅1𝐴)))
11 rsp 3131 . . . . . . . . . 10 (∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) → (𝑎 ∈ 𝒫 (𝑅1𝐴) → (𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))))
122, 10, 11sylsyld 61 . . . . . . . . 9 (𝜑 → (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → (𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))))
13123imp 1110 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))
1413eldifad 3899 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ∈ (𝒫 𝑎 ∩ Fin))
15 inss1 4162 . . . . . . . . 9 (𝒫 𝑎 ∩ Fin) ⊆ 𝒫 𝑎
1615sseli 3917 . . . . . . . 8 ((𝑦𝑎) ∈ (𝒫 𝑎 ∩ Fin) → (𝑦𝑎) ∈ 𝒫 𝑎)
1716elpwid 4544 . . . . . . 7 ((𝑦𝑎) ∈ (𝒫 𝑎 ∩ Fin) → (𝑦𝑎) ⊆ 𝑎)
1814, 17syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ⊆ 𝑎)
19 aomclem2.b . . . . . . . . 9 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
20 aomclem2.su . . . . . . . . 9 (𝜑 → dom 𝑧 = suc dom 𝑧)
21 aomclem2.we . . . . . . . . 9 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
2219, 3, 20, 21aomclem1 40879 . . . . . . . 8 (𝜑𝐵 Or (𝑅1‘dom 𝑧))
23223ad2ant1 1132 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → 𝐵 Or (𝑅1‘dom 𝑧))
24 inss2 4163 . . . . . . . 8 (𝒫 𝑎 ∩ Fin) ⊆ Fin
2524, 14sselid 3919 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ∈ Fin)
26 eldifsni 4723 . . . . . . . 8 ((𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}) → (𝑦𝑎) ≠ ∅)
2713, 26syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ≠ ∅)
28 elpwi 4542 . . . . . . . . 9 (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → 𝑎 ⊆ (𝑅1‘dom 𝑧))
29283ad2ant2 1133 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ (𝑅1‘dom 𝑧))
3018, 29sstrd 3931 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ⊆ (𝑅1‘dom 𝑧))
31 fisupcl 9228 . . . . . . 7 ((𝐵 Or (𝑅1‘dom 𝑧) ∧ ((𝑦𝑎) ∈ Fin ∧ (𝑦𝑎) ≠ ∅ ∧ (𝑦𝑎) ⊆ (𝑅1‘dom 𝑧))) → sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ (𝑦𝑎))
3223, 25, 27, 30, 31syl13anc 1371 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ (𝑦𝑎))
3318, 32sseldd 3922 . . . . 5 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ 𝑎)
34 aomclem2.c . . . . . 6 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
3534fvmpt2 6886 . . . . 5 ((𝑎 ∈ V ∧ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ 𝑎) → (𝐶𝑎) = sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
361, 33, 35sylancr 587 . . . 4 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝐶𝑎) = sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
3736, 33eqeltrd 2839 . . 3 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝐶𝑎) ∈ 𝑎)
38373exp 1118 . 2 (𝜑 → (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → (𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎)))
3938ralrimiv 3102 1 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   cuni 4839   class class class wbr 5074  {copab 5136  cmpt 5157   Or wor 5502   We wwe 5543  dom cdm 5589  Oncon0 6266  suc csuc 6268  cfv 6433  Fincfn 8733  supcsup 9199  𝑅1cr1 9520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-map 8617  df-en 8734  df-fin 8737  df-sup 9201  df-r1 9522
This theorem is referenced by:  aomclem3  40881
  Copyright terms: Public domain W3C validator