Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem2 Structured version   Visualization version   GIF version

Theorem aomclem2 39533
Description: Lemma for dfac11 39540. Successor case 2, a choice function for subsets of (𝑅1‘dom 𝑧). (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
aomclem2.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem2.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem2.on (𝜑 → dom 𝑧 ∈ On)
aomclem2.su (𝜑 → dom 𝑧 = suc dom 𝑧)
aomclem2.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
aomclem2.a (𝜑𝐴 ∈ On)
aomclem2.za (𝜑 → dom 𝑧𝐴)
aomclem2.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem2 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑏,𝑐,𝑑)   𝐴(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aomclem2
StepHypRef Expression
1 vex 3495 . . . . 5 𝑎 ∈ V
2 aomclem2.y . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
3 aomclem2.on . . . . . . . . . . . . . 14 (𝜑 → dom 𝑧 ∈ On)
4 aomclem2.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ On)
53, 4jca 512 . . . . . . . . . . . . 13 (𝜑 → (dom 𝑧 ∈ On ∧ 𝐴 ∈ On))
6 aomclem2.za . . . . . . . . . . . . 13 (𝜑 → dom 𝑧𝐴)
7 r1ord3 9199 . . . . . . . . . . . . 13 ((dom 𝑧 ∈ On ∧ 𝐴 ∈ On) → (dom 𝑧𝐴 → (𝑅1‘dom 𝑧) ⊆ (𝑅1𝐴)))
85, 6, 7sylc 65 . . . . . . . . . . . 12 (𝜑 → (𝑅1‘dom 𝑧) ⊆ (𝑅1𝐴))
9 sspwb 5332 . . . . . . . . . . . 12 ((𝑅1‘dom 𝑧) ⊆ (𝑅1𝐴) ↔ 𝒫 (𝑅1‘dom 𝑧) ⊆ 𝒫 (𝑅1𝐴))
108, 9sylib 219 . . . . . . . . . . 11 (𝜑 → 𝒫 (𝑅1‘dom 𝑧) ⊆ 𝒫 (𝑅1𝐴))
1110sseld 3963 . . . . . . . . . 10 (𝜑 → (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → 𝑎 ∈ 𝒫 (𝑅1𝐴)))
12 rsp 3202 . . . . . . . . . 10 (∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) → (𝑎 ∈ 𝒫 (𝑅1𝐴) → (𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))))
132, 11, 12sylsyld 61 . . . . . . . . 9 (𝜑 → (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → (𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))))
14133imp 1103 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))
1514eldifad 3945 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ∈ (𝒫 𝑎 ∩ Fin))
16 inss1 4202 . . . . . . . . 9 (𝒫 𝑎 ∩ Fin) ⊆ 𝒫 𝑎
1716sseli 3960 . . . . . . . 8 ((𝑦𝑎) ∈ (𝒫 𝑎 ∩ Fin) → (𝑦𝑎) ∈ 𝒫 𝑎)
1817elpwid 4549 . . . . . . 7 ((𝑦𝑎) ∈ (𝒫 𝑎 ∩ Fin) → (𝑦𝑎) ⊆ 𝑎)
1915, 18syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ⊆ 𝑎)
20 aomclem2.b . . . . . . . . 9 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
21 aomclem2.su . . . . . . . . 9 (𝜑 → dom 𝑧 = suc dom 𝑧)
22 aomclem2.we . . . . . . . . 9 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
2320, 3, 21, 22aomclem1 39532 . . . . . . . 8 (𝜑𝐵 Or (𝑅1‘dom 𝑧))
24233ad2ant1 1125 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → 𝐵 Or (𝑅1‘dom 𝑧))
25 inss2 4203 . . . . . . . 8 (𝒫 𝑎 ∩ Fin) ⊆ Fin
2625, 15sseldi 3962 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ∈ Fin)
27 eldifsni 4714 . . . . . . . 8 ((𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}) → (𝑦𝑎) ≠ ∅)
2814, 27syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ≠ ∅)
29 elpwi 4547 . . . . . . . . 9 (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → 𝑎 ⊆ (𝑅1‘dom 𝑧))
30293ad2ant2 1126 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ (𝑅1‘dom 𝑧))
3119, 30sstrd 3974 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝑦𝑎) ⊆ (𝑅1‘dom 𝑧))
32 fisupcl 8921 . . . . . . 7 ((𝐵 Or (𝑅1‘dom 𝑧) ∧ ((𝑦𝑎) ∈ Fin ∧ (𝑦𝑎) ≠ ∅ ∧ (𝑦𝑎) ⊆ (𝑅1‘dom 𝑧))) → sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ (𝑦𝑎))
3324, 26, 28, 31, 32syl13anc 1364 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ (𝑦𝑎))
3419, 33sseldd 3965 . . . . 5 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ 𝑎)
35 aomclem2.c . . . . . 6 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
3635fvmpt2 6771 . . . . 5 ((𝑎 ∈ V ∧ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵) ∈ 𝑎) → (𝐶𝑎) = sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
371, 34, 36sylancr 587 . . . 4 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝐶𝑎) = sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
3837, 34eqeltrd 2910 . . 3 ((𝜑𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) ∧ 𝑎 ≠ ∅) → (𝐶𝑎) ∈ 𝑎)
39383exp 1111 . 2 (𝜑 → (𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧) → (𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎)))
4039ralrimiv 3178 1 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘dom 𝑧)(𝑎 ≠ ∅ → (𝐶𝑎) ∈ 𝑎))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  Vcvv 3492  cdif 3930  cin 3932  wss 3933  c0 4288  𝒫 cpw 4535  {csn 4557   cuni 4830   class class class wbr 5057  {copab 5119  cmpt 5137   Or wor 5466   We wwe 5506  dom cdm 5548  Oncon0 6184  suc csuc 6186  cfv 6348  Fincfn 8497  supcsup 8892  𝑅1cr1 9179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-er 8278  df-map 8397  df-en 8498  df-fin 8501  df-sup 8894  df-r1 9181
This theorem is referenced by:  aomclem3  39534
  Copyright terms: Public domain W3C validator