| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | filfbas 23857 | . . . . . . 7
⊢ (𝐹 ∈ (Fil‘𝐴) → 𝐹 ∈ (fBas‘𝐴)) | 
| 2 | 1 | 3ad2ant1 1133 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝐴)) | 
| 3 |  | filsspw 23860 | . . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝐴) → 𝐹 ⊆ 𝒫 𝐴) | 
| 4 | 3 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ⊆ 𝒫 𝐴) | 
| 5 |  | simp2 1137 | . . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐴 ⊆ 𝑋) | 
| 6 | 5 | sspwd 4612 | . . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝒫 𝐴 ⊆ 𝒫 𝑋) | 
| 7 | 4, 6 | sstrd 3993 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ⊆ 𝒫 𝑋) | 
| 8 |  | simp3 1138 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | 
| 9 |  | fbasweak 23874 | . . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝐴) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝑋)) | 
| 10 | 2, 7, 8, 9 | syl3anc 1372 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝑋)) | 
| 11 |  | fgcl 23887 | . . . . 5
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) | 
| 12 | 10, 11 | syl 17 | . . . 4
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) | 
| 13 |  | filtop 23864 | . . . . 5
⊢ (𝐹 ∈ (Fil‘𝐴) → 𝐴 ∈ 𝐹) | 
| 14 | 13 | 3ad2ant1 1133 | . . . 4
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐴 ∈ 𝐹) | 
| 15 |  | restval 17472 | . . . 4
⊢ (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → ((𝑋filGen𝐹) ↾t 𝐴) = ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥 ∩ 𝐴))) | 
| 16 | 12, 14, 15 | syl2anc 584 | . . 3
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥 ∩ 𝐴))) | 
| 17 |  | elfg 23880 | . . . . . . . 8
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐹) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥))) | 
| 18 | 10, 17 | syl 17 | . . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ (𝑋filGen𝐹) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥))) | 
| 19 | 18 | simplbda 499 | . . . . . 6
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → ∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥) | 
| 20 |  | simpll1 1212 | . . . . . . 7
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → 𝐹 ∈ (Fil‘𝐴)) | 
| 21 |  | simprl 770 | . . . . . . 7
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐹) | 
| 22 |  | inss2 4237 | . . . . . . . 8
⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 | 
| 23 | 22 | a1i 11 | . . . . . . 7
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → (𝑥 ∩ 𝐴) ⊆ 𝐴) | 
| 24 |  | simprr 772 | . . . . . . . 8
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ⊆ 𝑥) | 
| 25 |  | filelss 23861 | . . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ 𝐴) | 
| 26 | 25 | 3ad2antl1 1185 | . . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ 𝐴) | 
| 27 | 26 | ad2ant2r 747 | . . . . . . . 8
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ⊆ 𝐴) | 
| 28 | 24, 27 | ssind 4240 | . . . . . . 7
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ⊆ (𝑥 ∩ 𝐴)) | 
| 29 |  | filss 23862 | . . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ (𝑦 ∈ 𝐹 ∧ (𝑥 ∩ 𝐴) ⊆ 𝐴 ∧ 𝑦 ⊆ (𝑥 ∩ 𝐴))) → (𝑥 ∩ 𝐴) ∈ 𝐹) | 
| 30 | 20, 21, 23, 28, 29 | syl13anc 1373 | . . . . . 6
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → (𝑥 ∩ 𝐴) ∈ 𝐹) | 
| 31 | 19, 30 | rexlimddv 3160 | . . . . 5
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → (𝑥 ∩ 𝐴) ∈ 𝐹) | 
| 32 | 31 | fmpttd 7134 | . . . 4
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥 ∩ 𝐴)):(𝑋filGen𝐹)⟶𝐹) | 
| 33 | 32 | frnd 6743 | . . 3
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥 ∩ 𝐴)) ⊆ 𝐹) | 
| 34 | 16, 33 | eqsstrd 4017 | . 2
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) ⊆ 𝐹) | 
| 35 |  | filelss 23861 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝐴) | 
| 36 | 35 | 3ad2antl1 1185 | . . . 4
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝐴) | 
| 37 |  | dfss2 3968 | . . . 4
⊢ (𝑥 ⊆ 𝐴 ↔ (𝑥 ∩ 𝐴) = 𝑥) | 
| 38 | 36, 37 | sylib 218 | . . 3
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) = 𝑥) | 
| 39 | 12 | adantr 480 | . . . 4
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) | 
| 40 | 14 | adantr 480 | . . . 4
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → 𝐴 ∈ 𝐹) | 
| 41 |  | ssfg 23881 | . . . . . 6
⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) | 
| 42 | 10, 41 | syl 17 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ⊆ (𝑋filGen𝐹)) | 
| 43 | 42 | sselda 3982 | . . . 4
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ (𝑋filGen𝐹)) | 
| 44 |  | elrestr 17474 | . . . 4
⊢ (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝑥 ∈ (𝑋filGen𝐹)) → (𝑥 ∩ 𝐴) ∈ ((𝑋filGen𝐹) ↾t 𝐴)) | 
| 45 | 39, 40, 43, 44 | syl3anc 1372 | . . 3
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ ((𝑋filGen𝐹) ↾t 𝐴)) | 
| 46 | 38, 45 | eqeltrrd 2841 | . 2
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ ((𝑋filGen𝐹) ↾t 𝐴)) | 
| 47 | 34, 46 | eqelssd 4004 | 1
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = 𝐹) |