Step | Hyp | Ref
| Expression |
1 | | filfbas 22907 |
. . . . . . 7
⊢ (𝐹 ∈ (Fil‘𝐴) → 𝐹 ∈ (fBas‘𝐴)) |
2 | 1 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝐴)) |
3 | | filsspw 22910 |
. . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝐴) → 𝐹 ⊆ 𝒫 𝐴) |
4 | 3 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ⊆ 𝒫 𝐴) |
5 | | simp2 1135 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐴 ⊆ 𝑋) |
6 | 5 | sspwd 4545 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝒫 𝐴 ⊆ 𝒫 𝑋) |
7 | 4, 6 | sstrd 3927 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ⊆ 𝒫 𝑋) |
8 | | simp3 1136 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
9 | | fbasweak 22924 |
. . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝐴) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝑋)) |
10 | 2, 7, 8, 9 | syl3anc 1369 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝑋)) |
11 | | fgcl 22937 |
. . . . 5
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) |
12 | 10, 11 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) |
13 | | filtop 22914 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝐴) → 𝐴 ∈ 𝐹) |
14 | 13 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐴 ∈ 𝐹) |
15 | | restval 17054 |
. . . 4
⊢ (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → ((𝑋filGen𝐹) ↾t 𝐴) = ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥 ∩ 𝐴))) |
16 | 12, 14, 15 | syl2anc 583 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥 ∩ 𝐴))) |
17 | | elfg 22930 |
. . . . . . . 8
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐹) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥))) |
18 | 10, 17 | syl 17 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ (𝑋filGen𝐹) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥))) |
19 | 18 | simplbda 499 |
. . . . . 6
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → ∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥) |
20 | | simpll1 1210 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → 𝐹 ∈ (Fil‘𝐴)) |
21 | | simprl 767 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐹) |
22 | | inss2 4160 |
. . . . . . . 8
⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 |
23 | 22 | a1i 11 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → (𝑥 ∩ 𝐴) ⊆ 𝐴) |
24 | | simprr 769 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ⊆ 𝑥) |
25 | | filelss 22911 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ 𝐴) |
26 | 25 | 3ad2antl1 1183 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ 𝐴) |
27 | 26 | ad2ant2r 743 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ⊆ 𝐴) |
28 | 24, 27 | ssind 4163 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ⊆ (𝑥 ∩ 𝐴)) |
29 | | filss 22912 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ (𝑦 ∈ 𝐹 ∧ (𝑥 ∩ 𝐴) ⊆ 𝐴 ∧ 𝑦 ⊆ (𝑥 ∩ 𝐴))) → (𝑥 ∩ 𝐴) ∈ 𝐹) |
30 | 20, 21, 23, 28, 29 | syl13anc 1370 |
. . . . . 6
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → (𝑥 ∩ 𝐴) ∈ 𝐹) |
31 | 19, 30 | rexlimddv 3219 |
. . . . 5
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → (𝑥 ∩ 𝐴) ∈ 𝐹) |
32 | 31 | fmpttd 6971 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥 ∩ 𝐴)):(𝑋filGen𝐹)⟶𝐹) |
33 | 32 | frnd 6592 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥 ∩ 𝐴)) ⊆ 𝐹) |
34 | 16, 33 | eqsstrd 3955 |
. 2
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) ⊆ 𝐹) |
35 | | filelss 22911 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝐴) |
36 | 35 | 3ad2antl1 1183 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝐴) |
37 | | df-ss 3900 |
. . . 4
⊢ (𝑥 ⊆ 𝐴 ↔ (𝑥 ∩ 𝐴) = 𝑥) |
38 | 36, 37 | sylib 217 |
. . 3
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) = 𝑥) |
39 | 12 | adantr 480 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) |
40 | 14 | adantr 480 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → 𝐴 ∈ 𝐹) |
41 | | ssfg 22931 |
. . . . . 6
⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
42 | 10, 41 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ⊆ (𝑋filGen𝐹)) |
43 | 42 | sselda 3917 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ (𝑋filGen𝐹)) |
44 | | elrestr 17056 |
. . . 4
⊢ (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝑥 ∈ (𝑋filGen𝐹)) → (𝑥 ∩ 𝐴) ∈ ((𝑋filGen𝐹) ↾t 𝐴)) |
45 | 39, 40, 43, 44 | syl3anc 1369 |
. . 3
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ ((𝑋filGen𝐹) ↾t 𝐴)) |
46 | 38, 45 | eqeltrrd 2840 |
. 2
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ ((𝑋filGen𝐹) ↾t 𝐴)) |
47 | 34, 46 | eqelssd 3938 |
1
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = 𝐹) |