MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfg Structured version   Visualization version   GIF version

Theorem trfg 23900
Description: The trace operation and the filGen operation are inverses to one another in some sense, with filGen growing the base set and t shrinking it. See fgtr 23899 for the converse cancellation law. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
trfg ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = 𝐹)

Proof of Theorem trfg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 23857 . . . . . . 7 (𝐹 ∈ (Fil‘𝐴) → 𝐹 ∈ (fBas‘𝐴))
213ad2ant1 1133 . . . . . 6 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ∈ (fBas‘𝐴))
3 filsspw 23860 . . . . . . . 8 (𝐹 ∈ (Fil‘𝐴) → 𝐹 ⊆ 𝒫 𝐴)
433ad2ant1 1133 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ⊆ 𝒫 𝐴)
5 simp2 1137 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐴𝑋)
65sspwd 4612 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝒫 𝐴 ⊆ 𝒫 𝑋)
74, 6sstrd 3993 . . . . . 6 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ⊆ 𝒫 𝑋)
8 simp3 1138 . . . . . 6 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝑋𝑉)
9 fbasweak 23874 . . . . . 6 ((𝐹 ∈ (fBas‘𝐴) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋𝑉) → 𝐹 ∈ (fBas‘𝑋))
102, 7, 8, 9syl3anc 1372 . . . . 5 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ∈ (fBas‘𝑋))
11 fgcl 23887 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
1210, 11syl 17 . . . 4 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
13 filtop 23864 . . . . 5 (𝐹 ∈ (Fil‘𝐴) → 𝐴𝐹)
14133ad2ant1 1133 . . . 4 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐴𝐹)
15 restval 17472 . . . 4 (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → ((𝑋filGen𝐹) ↾t 𝐴) = ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)))
1612, 14, 15syl2anc 584 . . 3 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)))
17 elfg 23880 . . . . . . . 8 (𝐹 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐹) ↔ (𝑥𝑋 ∧ ∃𝑦𝐹 𝑦𝑥)))
1810, 17syl 17 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → (𝑥 ∈ (𝑋filGen𝐹) ↔ (𝑥𝑋 ∧ ∃𝑦𝐹 𝑦𝑥)))
1918simplbda 499 . . . . . 6 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → ∃𝑦𝐹 𝑦𝑥)
20 simpll1 1212 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝐹 ∈ (Fil‘𝐴))
21 simprl 770 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦𝐹)
22 inss2 4237 . . . . . . . 8 (𝑥𝐴) ⊆ 𝐴
2322a1i 11 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → (𝑥𝐴) ⊆ 𝐴)
24 simprr 772 . . . . . . . 8 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦𝑥)
25 filelss 23861 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝑦𝐹) → 𝑦𝐴)
26253ad2antl1 1185 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑦𝐹) → 𝑦𝐴)
2726ad2ant2r 747 . . . . . . . 8 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦𝐴)
2824, 27ssind 4240 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦 ⊆ (𝑥𝐴))
29 filss 23862 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ (𝑦𝐹 ∧ (𝑥𝐴) ⊆ 𝐴𝑦 ⊆ (𝑥𝐴))) → (𝑥𝐴) ∈ 𝐹)
3020, 21, 23, 28, 29syl13anc 1373 . . . . . 6 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → (𝑥𝐴) ∈ 𝐹)
3119, 30rexlimddv 3160 . . . . 5 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → (𝑥𝐴) ∈ 𝐹)
3231fmpttd 7134 . . . 4 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)):(𝑋filGen𝐹)⟶𝐹)
3332frnd 6743 . . 3 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)) ⊆ 𝐹)
3416, 33eqsstrd 4017 . 2 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) ⊆ 𝐹)
35 filelss 23861 . . . . 5 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝑥𝐹) → 𝑥𝐴)
36353ad2antl1 1185 . . . 4 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝑥𝐴)
37 dfss2 3968 . . . 4 (𝑥𝐴 ↔ (𝑥𝐴) = 𝑥)
3836, 37sylib 218 . . 3 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → (𝑥𝐴) = 𝑥)
3912adantr 480 . . . 4 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
4014adantr 480 . . . 4 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝐴𝐹)
41 ssfg 23881 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
4210, 41syl 17 . . . . 5 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ⊆ (𝑋filGen𝐹))
4342sselda 3982 . . . 4 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝑥 ∈ (𝑋filGen𝐹))
44 elrestr 17474 . . . 4 (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝑥 ∈ (𝑋filGen𝐹)) → (𝑥𝐴) ∈ ((𝑋filGen𝐹) ↾t 𝐴))
4539, 40, 43, 44syl3anc 1372 . . 3 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → (𝑥𝐴) ∈ ((𝑋filGen𝐹) ↾t 𝐴))
4638, 45eqeltrrd 2841 . 2 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝑥 ∈ ((𝑋filGen𝐹) ↾t 𝐴))
4734, 46eqelssd 4004 1 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3069  cin 3949  wss 3950  𝒫 cpw 4599  cmpt 5224  ran crn 5685  cfv 6560  (class class class)co 7432  t crest 17466  fBascfbas 21353  filGencfg 21354  Filcfil 23854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-rest 17468  df-fbas 21362  df-fg 21363  df-fil 23855
This theorem is referenced by:  cmetss  25351  minveclem4a  25465
  Copyright terms: Public domain W3C validator