| Step | Hyp | Ref
| Expression |
| 1 | | filfbas 23791 |
. . . . . . 7
⊢ (𝐹 ∈ (Fil‘𝐴) → 𝐹 ∈ (fBas‘𝐴)) |
| 2 | 1 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝐴)) |
| 3 | | filsspw 23794 |
. . . . . . . 8
⊢ (𝐹 ∈ (Fil‘𝐴) → 𝐹 ⊆ 𝒫 𝐴) |
| 4 | 3 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ⊆ 𝒫 𝐴) |
| 5 | | simp2 1137 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐴 ⊆ 𝑋) |
| 6 | 5 | sspwd 4593 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝒫 𝐴 ⊆ 𝒫 𝑋) |
| 7 | 4, 6 | sstrd 3974 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ⊆ 𝒫 𝑋) |
| 8 | | simp3 1138 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
| 9 | | fbasweak 23808 |
. . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝐴) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝑋)) |
| 10 | 2, 7, 8, 9 | syl3anc 1373 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ (fBas‘𝑋)) |
| 11 | | fgcl 23821 |
. . . . 5
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) |
| 12 | 10, 11 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) |
| 13 | | filtop 23798 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝐴) → 𝐴 ∈ 𝐹) |
| 14 | 13 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐴 ∈ 𝐹) |
| 15 | | restval 17445 |
. . . 4
⊢ (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → ((𝑋filGen𝐹) ↾t 𝐴) = ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥 ∩ 𝐴))) |
| 16 | 12, 14, 15 | syl2anc 584 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥 ∩ 𝐴))) |
| 17 | | elfg 23814 |
. . . . . . . 8
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐹) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥))) |
| 18 | 10, 17 | syl 17 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ (𝑋filGen𝐹) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥))) |
| 19 | 18 | simplbda 499 |
. . . . . 6
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → ∃𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥) |
| 20 | | simpll1 1213 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → 𝐹 ∈ (Fil‘𝐴)) |
| 21 | | simprl 770 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐹) |
| 22 | | inss2 4218 |
. . . . . . . 8
⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 |
| 23 | 22 | a1i 11 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → (𝑥 ∩ 𝐴) ⊆ 𝐴) |
| 24 | | simprr 772 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ⊆ 𝑥) |
| 25 | | filelss 23795 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ 𝐴) |
| 26 | 25 | 3ad2antl1 1186 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ 𝐴) |
| 27 | 26 | ad2ant2r 747 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ⊆ 𝐴) |
| 28 | 24, 27 | ssind 4221 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ⊆ (𝑥 ∩ 𝐴)) |
| 29 | | filss 23796 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ (𝑦 ∈ 𝐹 ∧ (𝑥 ∩ 𝐴) ⊆ 𝐴 ∧ 𝑦 ⊆ (𝑥 ∩ 𝐴))) → (𝑥 ∩ 𝐴) ∈ 𝐹) |
| 30 | 20, 21, 23, 28, 29 | syl13anc 1374 |
. . . . . 6
⊢ ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥)) → (𝑥 ∩ 𝐴) ∈ 𝐹) |
| 31 | 19, 30 | rexlimddv 3148 |
. . . . 5
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → (𝑥 ∩ 𝐴) ∈ 𝐹) |
| 32 | 31 | fmpttd 7110 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥 ∩ 𝐴)):(𝑋filGen𝐹)⟶𝐹) |
| 33 | 32 | frnd 6719 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥 ∩ 𝐴)) ⊆ 𝐹) |
| 34 | 16, 33 | eqsstrd 3998 |
. 2
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) ⊆ 𝐹) |
| 35 | | filelss 23795 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝐴) |
| 36 | 35 | 3ad2antl1 1186 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝐴) |
| 37 | | dfss2 3949 |
. . . 4
⊢ (𝑥 ⊆ 𝐴 ↔ (𝑥 ∩ 𝐴) = 𝑥) |
| 38 | 36, 37 | sylib 218 |
. . 3
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) = 𝑥) |
| 39 | 12 | adantr 480 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) |
| 40 | 14 | adantr 480 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → 𝐴 ∈ 𝐹) |
| 41 | | ssfg 23815 |
. . . . . 6
⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
| 42 | 10, 41 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ⊆ (𝑋filGen𝐹)) |
| 43 | 42 | sselda 3963 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ (𝑋filGen𝐹)) |
| 44 | | elrestr 17447 |
. . . 4
⊢ (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝑥 ∈ (𝑋filGen𝐹)) → (𝑥 ∩ 𝐴) ∈ ((𝑋filGen𝐹) ↾t 𝐴)) |
| 45 | 39, 40, 43, 44 | syl3anc 1373 |
. . 3
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → (𝑥 ∩ 𝐴) ∈ ((𝑋filGen𝐹) ↾t 𝐴)) |
| 46 | 38, 45 | eqeltrrd 2836 |
. 2
⊢ (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ ((𝑋filGen𝐹) ↾t 𝐴)) |
| 47 | 34, 46 | eqelssd 3985 |
1
⊢ ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = 𝐹) |