MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfg Structured version   Visualization version   GIF version

Theorem trfg 21973
Description: The trace operation and the filGen operation are inverses to one another in some sense, with filGen growing the base set and t shrinking it. See fgtr 21972 for the converse cancellation law. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
trfg ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = 𝐹)

Proof of Theorem trfg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 21930 . . . . . . 7 (𝐹 ∈ (Fil‘𝐴) → 𝐹 ∈ (fBas‘𝐴))
213ad2ant1 1163 . . . . . 6 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ∈ (fBas‘𝐴))
3 filsspw 21933 . . . . . . . 8 (𝐹 ∈ (Fil‘𝐴) → 𝐹 ⊆ 𝒫 𝐴)
433ad2ant1 1163 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ⊆ 𝒫 𝐴)
5 simp2 1167 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐴𝑋)
6 sspwb 5072 . . . . . . . 8 (𝐴𝑋 ↔ 𝒫 𝐴 ⊆ 𝒫 𝑋)
75, 6sylib 209 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝒫 𝐴 ⊆ 𝒫 𝑋)
84, 7sstrd 3770 . . . . . 6 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ⊆ 𝒫 𝑋)
9 simp3 1168 . . . . . 6 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝑋𝑉)
10 fbasweak 21947 . . . . . 6 ((𝐹 ∈ (fBas‘𝐴) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋𝑉) → 𝐹 ∈ (fBas‘𝑋))
112, 8, 9, 10syl3anc 1490 . . . . 5 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ∈ (fBas‘𝑋))
12 fgcl 21960 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
1311, 12syl 17 . . . 4 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
14 filtop 21937 . . . . 5 (𝐹 ∈ (Fil‘𝐴) → 𝐴𝐹)
15143ad2ant1 1163 . . . 4 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐴𝐹)
16 restval 16354 . . . 4 (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → ((𝑋filGen𝐹) ↾t 𝐴) = ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)))
1713, 15, 16syl2anc 579 . . 3 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)))
18 elfg 21953 . . . . . . . 8 (𝐹 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐹) ↔ (𝑥𝑋 ∧ ∃𝑦𝐹 𝑦𝑥)))
1911, 18syl 17 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → (𝑥 ∈ (𝑋filGen𝐹) ↔ (𝑥𝑋 ∧ ∃𝑦𝐹 𝑦𝑥)))
2019simplbda 493 . . . . . 6 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → ∃𝑦𝐹 𝑦𝑥)
21 simpll1 1269 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝐹 ∈ (Fil‘𝐴))
22 simprl 787 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦𝐹)
23 inss2 3992 . . . . . . . 8 (𝑥𝐴) ⊆ 𝐴
2423a1i 11 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → (𝑥𝐴) ⊆ 𝐴)
25 simprr 789 . . . . . . . 8 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦𝑥)
26 filelss 21934 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝑦𝐹) → 𝑦𝐴)
27263ad2antl1 1236 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑦𝐹) → 𝑦𝐴)
2827ad2ant2r 753 . . . . . . . 8 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦𝐴)
2925, 28ssind 3995 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦 ⊆ (𝑥𝐴))
30 filss 21935 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ (𝑦𝐹 ∧ (𝑥𝐴) ⊆ 𝐴𝑦 ⊆ (𝑥𝐴))) → (𝑥𝐴) ∈ 𝐹)
3121, 22, 24, 29, 30syl13anc 1491 . . . . . 6 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → (𝑥𝐴) ∈ 𝐹)
3220, 31rexlimddv 3181 . . . . 5 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → (𝑥𝐴) ∈ 𝐹)
3332fmpttd 6574 . . . 4 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)):(𝑋filGen𝐹)⟶𝐹)
3433frnd 6229 . . 3 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)) ⊆ 𝐹)
3517, 34eqsstrd 3798 . 2 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) ⊆ 𝐹)
36 filelss 21934 . . . . 5 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝑥𝐹) → 𝑥𝐴)
37363ad2antl1 1236 . . . 4 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝑥𝐴)
38 df-ss 3745 . . . 4 (𝑥𝐴 ↔ (𝑥𝐴) = 𝑥)
3937, 38sylib 209 . . 3 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → (𝑥𝐴) = 𝑥)
4013adantr 472 . . . 4 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
4115adantr 472 . . . 4 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝐴𝐹)
42 ssfg 21954 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
4311, 42syl 17 . . . . 5 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ⊆ (𝑋filGen𝐹))
4443sselda 3760 . . . 4 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝑥 ∈ (𝑋filGen𝐹))
45 elrestr 16356 . . . 4 (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝑥 ∈ (𝑋filGen𝐹)) → (𝑥𝐴) ∈ ((𝑋filGen𝐹) ↾t 𝐴))
4640, 41, 44, 45syl3anc 1490 . . 3 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → (𝑥𝐴) ∈ ((𝑋filGen𝐹) ↾t 𝐴))
4739, 46eqeltrrd 2844 . 2 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝑥 ∈ ((𝑋filGen𝐹) ↾t 𝐴))
4835, 47eqelssd 3781 1 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wrex 3055  cin 3730  wss 3731  𝒫 cpw 4314  cmpt 4887  ran crn 5277  cfv 6067  (class class class)co 6841  t crest 16348  fBascfbas 20006  filGencfg 20007  Filcfil 21927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-op 4340  df-uni 4594  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-id 5184  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-rest 16350  df-fbas 20015  df-fg 20016  df-fil 21928
This theorem is referenced by:  cmetss  23392  minveclem4a  23489
  Copyright terms: Public domain W3C validator