MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfg Structured version   Visualization version   GIF version

Theorem trfg 23778
Description: The trace operation and the filGen operation are inverses to one another in some sense, with filGen growing the base set and t shrinking it. See fgtr 23777 for the converse cancellation law. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
trfg ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = 𝐹)

Proof of Theorem trfg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 23735 . . . . . . 7 (𝐹 ∈ (Fil‘𝐴) → 𝐹 ∈ (fBas‘𝐴))
213ad2ant1 1133 . . . . . 6 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ∈ (fBas‘𝐴))
3 filsspw 23738 . . . . . . . 8 (𝐹 ∈ (Fil‘𝐴) → 𝐹 ⊆ 𝒫 𝐴)
433ad2ant1 1133 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ⊆ 𝒫 𝐴)
5 simp2 1137 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐴𝑋)
65sspwd 4576 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝒫 𝐴 ⊆ 𝒫 𝑋)
74, 6sstrd 3957 . . . . . 6 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ⊆ 𝒫 𝑋)
8 simp3 1138 . . . . . 6 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝑋𝑉)
9 fbasweak 23752 . . . . . 6 ((𝐹 ∈ (fBas‘𝐴) ∧ 𝐹 ⊆ 𝒫 𝑋𝑋𝑉) → 𝐹 ∈ (fBas‘𝑋))
102, 7, 8, 9syl3anc 1373 . . . . 5 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ∈ (fBas‘𝑋))
11 fgcl 23765 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
1210, 11syl 17 . . . 4 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
13 filtop 23742 . . . . 5 (𝐹 ∈ (Fil‘𝐴) → 𝐴𝐹)
14133ad2ant1 1133 . . . 4 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐴𝐹)
15 restval 17389 . . . 4 (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → ((𝑋filGen𝐹) ↾t 𝐴) = ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)))
1612, 14, 15syl2anc 584 . . 3 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)))
17 elfg 23758 . . . . . . . 8 (𝐹 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐹) ↔ (𝑥𝑋 ∧ ∃𝑦𝐹 𝑦𝑥)))
1810, 17syl 17 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → (𝑥 ∈ (𝑋filGen𝐹) ↔ (𝑥𝑋 ∧ ∃𝑦𝐹 𝑦𝑥)))
1918simplbda 499 . . . . . 6 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → ∃𝑦𝐹 𝑦𝑥)
20 simpll1 1213 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝐹 ∈ (Fil‘𝐴))
21 simprl 770 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦𝐹)
22 inss2 4201 . . . . . . . 8 (𝑥𝐴) ⊆ 𝐴
2322a1i 11 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → (𝑥𝐴) ⊆ 𝐴)
24 simprr 772 . . . . . . . 8 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦𝑥)
25 filelss 23739 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝑦𝐹) → 𝑦𝐴)
26253ad2antl1 1186 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑦𝐹) → 𝑦𝐴)
2726ad2ant2r 747 . . . . . . . 8 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦𝐴)
2824, 27ssind 4204 . . . . . . 7 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → 𝑦 ⊆ (𝑥𝐴))
29 filss 23740 . . . . . . 7 ((𝐹 ∈ (Fil‘𝐴) ∧ (𝑦𝐹 ∧ (𝑥𝐴) ⊆ 𝐴𝑦 ⊆ (𝑥𝐴))) → (𝑥𝐴) ∈ 𝐹)
3020, 21, 23, 28, 29syl13anc 1374 . . . . . 6 ((((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) ∧ (𝑦𝐹𝑦𝑥)) → (𝑥𝐴) ∈ 𝐹)
3119, 30rexlimddv 3140 . . . . 5 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → (𝑥𝐴) ∈ 𝐹)
3231fmpttd 7087 . . . 4 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)):(𝑋filGen𝐹)⟶𝐹)
3332frnd 6696 . . 3 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ran (𝑥 ∈ (𝑋filGen𝐹) ↦ (𝑥𝐴)) ⊆ 𝐹)
3416, 33eqsstrd 3981 . 2 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) ⊆ 𝐹)
35 filelss 23739 . . . . 5 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝑥𝐹) → 𝑥𝐴)
36353ad2antl1 1186 . . . 4 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝑥𝐴)
37 dfss2 3932 . . . 4 (𝑥𝐴 ↔ (𝑥𝐴) = 𝑥)
3836, 37sylib 218 . . 3 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → (𝑥𝐴) = 𝑥)
3912adantr 480 . . . 4 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
4014adantr 480 . . . 4 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝐴𝐹)
41 ssfg 23759 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
4210, 41syl 17 . . . . 5 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → 𝐹 ⊆ (𝑋filGen𝐹))
4342sselda 3946 . . . 4 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝑥 ∈ (𝑋filGen𝐹))
44 elrestr 17391 . . . 4 (((𝑋filGen𝐹) ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝑥 ∈ (𝑋filGen𝐹)) → (𝑥𝐴) ∈ ((𝑋filGen𝐹) ↾t 𝐴))
4539, 40, 43, 44syl3anc 1373 . . 3 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → (𝑥𝐴) ∈ ((𝑋filGen𝐹) ↾t 𝐴))
4638, 45eqeltrrd 2829 . 2 (((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) ∧ 𝑥𝐹) → 𝑥 ∈ ((𝑋filGen𝐹) ↾t 𝐴))
4734, 46eqelssd 3968 1 ((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cin 3913  wss 3914  𝒫 cpw 4563  cmpt 5188  ran crn 5639  cfv 6511  (class class class)co 7387  t crest 17383  fBascfbas 21252  filGencfg 21253  Filcfil 23732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rest 17385  df-fbas 21261  df-fg 21262  df-fil 23733
This theorem is referenced by:  cmetss  25216  minveclem4a  25330
  Copyright terms: Public domain W3C validator