MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs3lem Structured version   Visualization version   GIF version

Theorem isacs3lem 18552
Description: An algebraic closure system satisfies isacs3 18560. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isacs3lem (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
Distinct variable groups:   𝐶,𝑠   𝑋,𝑠

Proof of Theorem isacs3lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsmre 17664 . 2 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 mresspw 17604 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
31, 2syl 17 . . . . . . . . . 10 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
43sspwd 4588 . . . . . . . . 9 (𝐶 ∈ (ACS‘𝑋) → 𝒫 𝐶 ⊆ 𝒫 𝒫 𝑋)
54sselda 3958 . . . . . . . 8 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠 ∈ 𝒫 𝒫 𝑋)
65elpwid 4584 . . . . . . 7 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠 ⊆ 𝒫 𝑋)
7 sspwuni 5076 . . . . . . 7 (𝑠 ⊆ 𝒫 𝑋 𝑠𝑋)
86, 7sylib 218 . . . . . 6 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠𝑋)
98adantr 480 . . . . 5 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝑋)
10 elinel1 4176 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → 𝑥 ∈ 𝒫 𝑠)
1110elpwid 4584 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → 𝑥 𝑠)
12 elinel2 4177 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → 𝑥 ∈ Fin)
13 fissuni 9369 . . . . . . . . . 10 ((𝑥 𝑠𝑥 ∈ Fin) → ∃𝑦 ∈ (𝒫 𝑠 ∩ Fin)𝑥 𝑦)
1411, 12, 13syl2anc 584 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → ∃𝑦 ∈ (𝒫 𝑠 ∩ Fin)𝑥 𝑦)
1514ad2antll 729 . . . . . . . 8 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) → ∃𝑦 ∈ (𝒫 𝑠 ∩ Fin)𝑥 𝑦)
161ad3antrrr 730 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝐶 ∈ (Moore‘𝑋))
17 eqid 2735 . . . . . . . . . 10 (mrCls‘𝐶) = (mrCls‘𝐶)
18 simprr 772 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑥 𝑦)
19 elinel1 4176 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ 𝒫 𝑠)
2019elpwid 4584 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦𝑠)
2120unissd 4893 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 𝑠)
2221ad2antrl 728 . . . . . . . . . . 11 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑦 𝑠)
238ad2antrr 726 . . . . . . . . . . 11 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑠𝑋)
2422, 23sstrd 3969 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑦𝑋)
2516, 17, 18, 24mrcssd 17636 . . . . . . . . 9 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘𝑥) ⊆ ((mrCls‘𝐶)‘ 𝑦))
26 simpl 482 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (toInc‘𝑠) ∈ Dirset)
2720adantl 481 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦𝑠)
28 elinel2 4177 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ Fin)
2928adantl 481 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ Fin)
30 ipodrsfi 18549 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦𝑠𝑦 ∈ Fin) → ∃𝑥𝑠 𝑦𝑥)
3126, 27, 29, 30syl3anc 1373 . . . . . . . . . . . . . 14 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ∃𝑥𝑠 𝑦𝑥)
3231adantl 481 . . . . . . . . . . . . 13 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) → ∃𝑥𝑠 𝑦𝑥)
331ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝐶 ∈ (Moore‘𝑋))
34 simprr 772 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑦𝑥)
35 elpwi 4582 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ 𝒫 𝐶𝑠𝐶)
3635adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠𝐶)
3736ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑠𝐶)
38 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑥𝑠)
3937, 38sseldd 3959 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑥𝐶)
4017mrcsscl 17632 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦𝑥𝑥𝐶) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑥)
4133, 34, 39, 40syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑥)
42 elssuni 4913 . . . . . . . . . . . . . . 15 (𝑥𝑠𝑥 𝑠)
4342ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑥 𝑠)
4441, 43sstrd 3969 . . . . . . . . . . . . 13 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4532, 44rexlimddv 3147 . . . . . . . . . . . 12 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4645anassrs 467 . . . . . . . . . . 11 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4746adantrr 717 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4847adantlrr 721 . . . . . . . . 9 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4925, 48sstrd 3969 . . . . . . . 8 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5015, 49rexlimddv 3147 . . . . . . 7 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) → ((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5150anassrs 467 . . . . . 6 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin)) → ((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5251ralrimiva 3132 . . . . 5 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∀𝑥 ∈ (𝒫 𝑠 ∩ Fin)((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5317acsfiel 17666 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → ( 𝑠𝐶 ↔ ( 𝑠𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑠 ∩ Fin)((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)))
5453ad2antrr 726 . . . . 5 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ( 𝑠𝐶 ↔ ( 𝑠𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑠 ∩ Fin)((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)))
559, 52, 54mpbir2and 713 . . . 4 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
5655ex 412 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → ((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
5756ralrimiva 3132 . 2 (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
581, 57jca 511 1 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3051  wrex 3060  cin 3925  wss 3926  𝒫 cpw 4575   cuni 4883  cfv 6531  Fincfn 8959  Moorecmre 17594  mrClscmrc 17595  ACScacs 17597  Dirsetcdrs 18305  toInccipo 18537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-tset 17290  df-ple 17291  df-ocomp 17292  df-mre 17598  df-mrc 17599  df-acs 17601  df-proset 18306  df-drs 18307  df-poset 18325  df-ipo 18538
This theorem is referenced by:  acsdrsel  18553  acsdrscl  18556  acsficl  18557  isacs5  18558  isacs4  18559  isacs3  18560
  Copyright terms: Public domain W3C validator