MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs3lem Structured version   Visualization version   GIF version

Theorem isacs3lem 18260
Description: An algebraic closure system satisfies isacs3 18268. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isacs3lem (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
Distinct variable groups:   𝐶,𝑠   𝑋,𝑠

Proof of Theorem isacs3lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsmre 17361 . 2 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 mresspw 17301 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
31, 2syl 17 . . . . . . . . . 10 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
43sspwd 4548 . . . . . . . . 9 (𝐶 ∈ (ACS‘𝑋) → 𝒫 𝐶 ⊆ 𝒫 𝒫 𝑋)
54sselda 3921 . . . . . . . 8 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠 ∈ 𝒫 𝒫 𝑋)
65elpwid 4544 . . . . . . 7 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠 ⊆ 𝒫 𝑋)
7 sspwuni 5029 . . . . . . 7 (𝑠 ⊆ 𝒫 𝑋 𝑠𝑋)
86, 7sylib 217 . . . . . 6 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠𝑋)
98adantr 481 . . . . 5 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝑋)
10 elinel1 4129 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → 𝑥 ∈ 𝒫 𝑠)
1110elpwid 4544 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → 𝑥 𝑠)
12 elinel2 4130 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → 𝑥 ∈ Fin)
13 fissuni 9124 . . . . . . . . . 10 ((𝑥 𝑠𝑥 ∈ Fin) → ∃𝑦 ∈ (𝒫 𝑠 ∩ Fin)𝑥 𝑦)
1411, 12, 13syl2anc 584 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → ∃𝑦 ∈ (𝒫 𝑠 ∩ Fin)𝑥 𝑦)
1514ad2antll 726 . . . . . . . 8 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) → ∃𝑦 ∈ (𝒫 𝑠 ∩ Fin)𝑥 𝑦)
161ad3antrrr 727 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝐶 ∈ (Moore‘𝑋))
17 eqid 2738 . . . . . . . . . 10 (mrCls‘𝐶) = (mrCls‘𝐶)
18 simprr 770 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑥 𝑦)
19 elinel1 4129 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ 𝒫 𝑠)
2019elpwid 4544 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦𝑠)
2120unissd 4849 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 𝑠)
2221ad2antrl 725 . . . . . . . . . . 11 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑦 𝑠)
238ad2antrr 723 . . . . . . . . . . 11 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑠𝑋)
2422, 23sstrd 3931 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑦𝑋)
2516, 17, 18, 24mrcssd 17333 . . . . . . . . 9 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘𝑥) ⊆ ((mrCls‘𝐶)‘ 𝑦))
26 simpl 483 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (toInc‘𝑠) ∈ Dirset)
2720adantl 482 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦𝑠)
28 elinel2 4130 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ Fin)
2928adantl 482 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ Fin)
30 ipodrsfi 18257 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦𝑠𝑦 ∈ Fin) → ∃𝑥𝑠 𝑦𝑥)
3126, 27, 29, 30syl3anc 1370 . . . . . . . . . . . . . 14 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ∃𝑥𝑠 𝑦𝑥)
3231adantl 482 . . . . . . . . . . . . 13 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) → ∃𝑥𝑠 𝑦𝑥)
331ad3antrrr 727 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝐶 ∈ (Moore‘𝑋))
34 simprr 770 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑦𝑥)
35 elpwi 4542 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ 𝒫 𝐶𝑠𝐶)
3635adantl 482 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠𝐶)
3736ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑠𝐶)
38 simprl 768 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑥𝑠)
3937, 38sseldd 3922 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑥𝐶)
4017mrcsscl 17329 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦𝑥𝑥𝐶) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑥)
4133, 34, 39, 40syl3anc 1370 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑥)
42 elssuni 4871 . . . . . . . . . . . . . . 15 (𝑥𝑠𝑥 𝑠)
4342ad2antrl 725 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑥 𝑠)
4441, 43sstrd 3931 . . . . . . . . . . . . 13 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4532, 44rexlimddv 3220 . . . . . . . . . . . 12 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4645anassrs 468 . . . . . . . . . . 11 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4746adantrr 714 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4847adantlrr 718 . . . . . . . . 9 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4925, 48sstrd 3931 . . . . . . . 8 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5015, 49rexlimddv 3220 . . . . . . 7 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) → ((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5150anassrs 468 . . . . . 6 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin)) → ((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5251ralrimiva 3103 . . . . 5 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∀𝑥 ∈ (𝒫 𝑠 ∩ Fin)((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5317acsfiel 17363 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → ( 𝑠𝐶 ↔ ( 𝑠𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑠 ∩ Fin)((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)))
5453ad2antrr 723 . . . . 5 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ( 𝑠𝐶 ↔ ( 𝑠𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑠 ∩ Fin)((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)))
559, 52, 54mpbir2and 710 . . . 4 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
5655ex 413 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → ((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
5756ralrimiva 3103 . 2 (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
581, 57jca 512 1 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wral 3064  wrex 3065  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839  cfv 6433  Fincfn 8733  Moorecmre 17291  mrClscmrc 17292  ACScacs 17294  Dirsetcdrs 18012  toInccipo 18245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-tset 16981  df-ple 16982  df-ocomp 16983  df-mre 17295  df-mrc 17296  df-acs 17298  df-proset 18013  df-drs 18014  df-poset 18031  df-ipo 18246
This theorem is referenced by:  acsdrsel  18261  acsdrscl  18264  acsficl  18265  isacs5  18266  isacs4  18267  isacs3  18268
  Copyright terms: Public domain W3C validator