MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs3lem Structured version   Visualization version   GIF version

Theorem isacs3lem 18175
Description: An algebraic closure system satisfies isacs3 18183. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isacs3lem (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
Distinct variable groups:   𝐶,𝑠   𝑋,𝑠

Proof of Theorem isacs3lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsmre 17278 . 2 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 mresspw 17218 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
31, 2syl 17 . . . . . . . . . 10 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
43sspwd 4545 . . . . . . . . 9 (𝐶 ∈ (ACS‘𝑋) → 𝒫 𝐶 ⊆ 𝒫 𝒫 𝑋)
54sselda 3917 . . . . . . . 8 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠 ∈ 𝒫 𝒫 𝑋)
65elpwid 4541 . . . . . . 7 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠 ⊆ 𝒫 𝑋)
7 sspwuni 5025 . . . . . . 7 (𝑠 ⊆ 𝒫 𝑋 𝑠𝑋)
86, 7sylib 217 . . . . . 6 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠𝑋)
98adantr 480 . . . . 5 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝑋)
10 elinel1 4125 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → 𝑥 ∈ 𝒫 𝑠)
1110elpwid 4541 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → 𝑥 𝑠)
12 elinel2 4126 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → 𝑥 ∈ Fin)
13 fissuni 9054 . . . . . . . . . 10 ((𝑥 𝑠𝑥 ∈ Fin) → ∃𝑦 ∈ (𝒫 𝑠 ∩ Fin)𝑥 𝑦)
1411, 12, 13syl2anc 583 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → ∃𝑦 ∈ (𝒫 𝑠 ∩ Fin)𝑥 𝑦)
1514ad2antll 725 . . . . . . . 8 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) → ∃𝑦 ∈ (𝒫 𝑠 ∩ Fin)𝑥 𝑦)
161ad3antrrr 726 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝐶 ∈ (Moore‘𝑋))
17 eqid 2738 . . . . . . . . . 10 (mrCls‘𝐶) = (mrCls‘𝐶)
18 simprr 769 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑥 𝑦)
19 elinel1 4125 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ 𝒫 𝑠)
2019elpwid 4541 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦𝑠)
2120unissd 4846 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 𝑠)
2221ad2antrl 724 . . . . . . . . . . 11 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑦 𝑠)
238ad2antrr 722 . . . . . . . . . . 11 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑠𝑋)
2422, 23sstrd 3927 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑦𝑋)
2516, 17, 18, 24mrcssd 17250 . . . . . . . . 9 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘𝑥) ⊆ ((mrCls‘𝐶)‘ 𝑦))
26 simpl 482 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (toInc‘𝑠) ∈ Dirset)
2720adantl 481 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦𝑠)
28 elinel2 4126 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ Fin)
2928adantl 481 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ Fin)
30 ipodrsfi 18172 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦𝑠𝑦 ∈ Fin) → ∃𝑥𝑠 𝑦𝑥)
3126, 27, 29, 30syl3anc 1369 . . . . . . . . . . . . . 14 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ∃𝑥𝑠 𝑦𝑥)
3231adantl 481 . . . . . . . . . . . . 13 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) → ∃𝑥𝑠 𝑦𝑥)
331ad3antrrr 726 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝐶 ∈ (Moore‘𝑋))
34 simprr 769 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑦𝑥)
35 elpwi 4539 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ 𝒫 𝐶𝑠𝐶)
3635adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠𝐶)
3736ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑠𝐶)
38 simprl 767 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑥𝑠)
3937, 38sseldd 3918 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑥𝐶)
4017mrcsscl 17246 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦𝑥𝑥𝐶) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑥)
4133, 34, 39, 40syl3anc 1369 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑥)
42 elssuni 4868 . . . . . . . . . . . . . . 15 (𝑥𝑠𝑥 𝑠)
4342ad2antrl 724 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑥 𝑠)
4441, 43sstrd 3927 . . . . . . . . . . . . 13 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4532, 44rexlimddv 3219 . . . . . . . . . . . 12 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4645anassrs 467 . . . . . . . . . . 11 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4746adantrr 713 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4847adantlrr 717 . . . . . . . . 9 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4925, 48sstrd 3927 . . . . . . . 8 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5015, 49rexlimddv 3219 . . . . . . 7 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) → ((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5150anassrs 467 . . . . . 6 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin)) → ((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5251ralrimiva 3107 . . . . 5 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∀𝑥 ∈ (𝒫 𝑠 ∩ Fin)((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5317acsfiel 17280 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → ( 𝑠𝐶 ↔ ( 𝑠𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑠 ∩ Fin)((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)))
5453ad2antrr 722 . . . . 5 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ( 𝑠𝐶 ↔ ( 𝑠𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑠 ∩ Fin)((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)))
559, 52, 54mpbir2and 709 . . . 4 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
5655ex 412 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → ((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
5756ralrimiva 3107 . 2 (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
581, 57jca 511 1 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wral 3063  wrex 3064  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836  cfv 6418  Fincfn 8691  Moorecmre 17208  mrClscmrc 17209  ACScacs 17211  Dirsetcdrs 17927  toInccipo 18160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-tset 16907  df-ple 16908  df-ocomp 16909  df-mre 17212  df-mrc 17213  df-acs 17215  df-proset 17928  df-drs 17929  df-poset 17946  df-ipo 18161
This theorem is referenced by:  acsdrsel  18176  acsdrscl  18179  acsficl  18180  isacs5  18181  isacs4  18182  isacs3  18183
  Copyright terms: Public domain W3C validator