MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs3lem Structured version   Visualization version   GIF version

Theorem isacs3lem 18492
Description: An algebraic closure system satisfies isacs3 18500. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isacs3lem (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
Distinct variable groups:   𝐶,𝑠   𝑋,𝑠

Proof of Theorem isacs3lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsmre 17593 . 2 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 mresspw 17533 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
31, 2syl 17 . . . . . . . . . 10 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
43sspwd 4615 . . . . . . . . 9 (𝐶 ∈ (ACS‘𝑋) → 𝒫 𝐶 ⊆ 𝒫 𝒫 𝑋)
54sselda 3982 . . . . . . . 8 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠 ∈ 𝒫 𝒫 𝑋)
65elpwid 4611 . . . . . . 7 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠 ⊆ 𝒫 𝑋)
7 sspwuni 5103 . . . . . . 7 (𝑠 ⊆ 𝒫 𝑋 𝑠𝑋)
86, 7sylib 217 . . . . . 6 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠𝑋)
98adantr 482 . . . . 5 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝑋)
10 elinel1 4195 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → 𝑥 ∈ 𝒫 𝑠)
1110elpwid 4611 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → 𝑥 𝑠)
12 elinel2 4196 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → 𝑥 ∈ Fin)
13 fissuni 9354 . . . . . . . . . 10 ((𝑥 𝑠𝑥 ∈ Fin) → ∃𝑦 ∈ (𝒫 𝑠 ∩ Fin)𝑥 𝑦)
1411, 12, 13syl2anc 585 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → ∃𝑦 ∈ (𝒫 𝑠 ∩ Fin)𝑥 𝑦)
1514ad2antll 728 . . . . . . . 8 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) → ∃𝑦 ∈ (𝒫 𝑠 ∩ Fin)𝑥 𝑦)
161ad3antrrr 729 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝐶 ∈ (Moore‘𝑋))
17 eqid 2733 . . . . . . . . . 10 (mrCls‘𝐶) = (mrCls‘𝐶)
18 simprr 772 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑥 𝑦)
19 elinel1 4195 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ 𝒫 𝑠)
2019elpwid 4611 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦𝑠)
2120unissd 4918 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 𝑠)
2221ad2antrl 727 . . . . . . . . . . 11 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑦 𝑠)
238ad2antrr 725 . . . . . . . . . . 11 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑠𝑋)
2422, 23sstrd 3992 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑦𝑋)
2516, 17, 18, 24mrcssd 17565 . . . . . . . . 9 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘𝑥) ⊆ ((mrCls‘𝐶)‘ 𝑦))
26 simpl 484 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (toInc‘𝑠) ∈ Dirset)
2720adantl 483 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦𝑠)
28 elinel2 4196 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ Fin)
2928adantl 483 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ Fin)
30 ipodrsfi 18489 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦𝑠𝑦 ∈ Fin) → ∃𝑥𝑠 𝑦𝑥)
3126, 27, 29, 30syl3anc 1372 . . . . . . . . . . . . . 14 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ∃𝑥𝑠 𝑦𝑥)
3231adantl 483 . . . . . . . . . . . . 13 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) → ∃𝑥𝑠 𝑦𝑥)
331ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝐶 ∈ (Moore‘𝑋))
34 simprr 772 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑦𝑥)
35 elpwi 4609 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ 𝒫 𝐶𝑠𝐶)
3635adantl 483 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠𝐶)
3736ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑠𝐶)
38 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑥𝑠)
3937, 38sseldd 3983 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑥𝐶)
4017mrcsscl 17561 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦𝑥𝑥𝐶) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑥)
4133, 34, 39, 40syl3anc 1372 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑥)
42 elssuni 4941 . . . . . . . . . . . . . . 15 (𝑥𝑠𝑥 𝑠)
4342ad2antrl 727 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑥 𝑠)
4441, 43sstrd 3992 . . . . . . . . . . . . 13 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4532, 44rexlimddv 3162 . . . . . . . . . . . 12 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4645anassrs 469 . . . . . . . . . . 11 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4746adantrr 716 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4847adantlrr 720 . . . . . . . . 9 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4925, 48sstrd 3992 . . . . . . . 8 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5015, 49rexlimddv 3162 . . . . . . 7 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) → ((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5150anassrs 469 . . . . . 6 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin)) → ((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5251ralrimiva 3147 . . . . 5 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∀𝑥 ∈ (𝒫 𝑠 ∩ Fin)((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5317acsfiel 17595 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → ( 𝑠𝐶 ↔ ( 𝑠𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑠 ∩ Fin)((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)))
5453ad2antrr 725 . . . . 5 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ( 𝑠𝐶 ↔ ( 𝑠𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑠 ∩ Fin)((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)))
559, 52, 54mpbir2and 712 . . . 4 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
5655ex 414 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → ((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
5756ralrimiva 3147 . 2 (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
581, 57jca 513 1 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  wral 3062  wrex 3071  cin 3947  wss 3948  𝒫 cpw 4602   cuni 4908  cfv 6541  Fincfn 8936  Moorecmre 17523  mrClscmrc 17524  ACScacs 17526  Dirsetcdrs 18244  toInccipo 18477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-fz 13482  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17142  df-tset 17213  df-ple 17214  df-ocomp 17215  df-mre 17527  df-mrc 17528  df-acs 17530  df-proset 18245  df-drs 18246  df-poset 18263  df-ipo 18478
This theorem is referenced by:  acsdrsel  18493  acsdrscl  18496  acsficl  18497  isacs5  18498  isacs4  18499  isacs3  18500
  Copyright terms: Public domain W3C validator