MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs3lem Structured version   Visualization version   GIF version

Theorem isacs3lem 17776
Description: An algebraic closure system satisfies isacs3 17784. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isacs3lem (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
Distinct variable groups:   𝐶,𝑠   𝑋,𝑠

Proof of Theorem isacs3lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsmre 16923 . 2 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 mresspw 16863 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
31, 2syl 17 . . . . . . . . . 10 (𝐶 ∈ (ACS‘𝑋) → 𝐶 ⊆ 𝒫 𝑋)
43sspwd 4554 . . . . . . . . 9 (𝐶 ∈ (ACS‘𝑋) → 𝒫 𝐶 ⊆ 𝒫 𝒫 𝑋)
54sselda 3967 . . . . . . . 8 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠 ∈ 𝒫 𝒫 𝑋)
65elpwid 4550 . . . . . . 7 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠 ⊆ 𝒫 𝑋)
7 sspwuni 5022 . . . . . . 7 (𝑠 ⊆ 𝒫 𝑋 𝑠𝑋)
86, 7sylib 220 . . . . . 6 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠𝑋)
98adantr 483 . . . . 5 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝑋)
10 elinel1 4172 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → 𝑥 ∈ 𝒫 𝑠)
1110elpwid 4550 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → 𝑥 𝑠)
12 elinel2 4173 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → 𝑥 ∈ Fin)
13 fissuni 8829 . . . . . . . . . 10 ((𝑥 𝑠𝑥 ∈ Fin) → ∃𝑦 ∈ (𝒫 𝑠 ∩ Fin)𝑥 𝑦)
1411, 12, 13syl2anc 586 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑠 ∩ Fin) → ∃𝑦 ∈ (𝒫 𝑠 ∩ Fin)𝑥 𝑦)
1514ad2antll 727 . . . . . . . 8 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) → ∃𝑦 ∈ (𝒫 𝑠 ∩ Fin)𝑥 𝑦)
161ad3antrrr 728 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝐶 ∈ (Moore‘𝑋))
17 eqid 2821 . . . . . . . . . 10 (mrCls‘𝐶) = (mrCls‘𝐶)
18 simprr 771 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑥 𝑦)
19 elinel1 4172 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ 𝒫 𝑠)
2019elpwid 4550 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦𝑠)
2120unissd 4848 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 𝑠)
2221ad2antrl 726 . . . . . . . . . . 11 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑦 𝑠)
238ad2antrr 724 . . . . . . . . . . 11 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑠𝑋)
2422, 23sstrd 3977 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → 𝑦𝑋)
2516, 17, 18, 24mrcssd 16895 . . . . . . . . 9 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘𝑥) ⊆ ((mrCls‘𝐶)‘ 𝑦))
26 simpl 485 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → (toInc‘𝑠) ∈ Dirset)
2720adantl 484 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦𝑠)
28 elinel2 4173 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝑠 ∩ Fin) → 𝑦 ∈ Fin)
2928adantl 484 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → 𝑦 ∈ Fin)
30 ipodrsfi 17773 . . . . . . . . . . . . . . 15 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦𝑠𝑦 ∈ Fin) → ∃𝑥𝑠 𝑦𝑥)
3126, 27, 29, 30syl3anc 1367 . . . . . . . . . . . . . 14 (((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ∃𝑥𝑠 𝑦𝑥)
3231adantl 484 . . . . . . . . . . . . 13 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) → ∃𝑥𝑠 𝑦𝑥)
331ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝐶 ∈ (Moore‘𝑋))
34 simprr 771 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑦𝑥)
35 elpwi 4548 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ 𝒫 𝐶𝑠𝐶)
3635adantl 484 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → 𝑠𝐶)
3736ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑠𝐶)
38 simprl 769 . . . . . . . . . . . . . . . 16 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑥𝑠)
3937, 38sseldd 3968 . . . . . . . . . . . . . . 15 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑥𝐶)
4017mrcsscl 16891 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑦𝑥𝑥𝐶) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑥)
4133, 34, 39, 40syl3anc 1367 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑥)
42 elssuni 4868 . . . . . . . . . . . . . . 15 (𝑥𝑠𝑥 𝑠)
4342ad2antrl 726 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → 𝑥 𝑠)
4441, 43sstrd 3977 . . . . . . . . . . . . 13 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑥𝑠 𝑦𝑥)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4532, 44rexlimddv 3291 . . . . . . . . . . . 12 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin))) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4645anassrs 470 . . . . . . . . . . 11 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) ∧ 𝑦 ∈ (𝒫 𝑠 ∩ Fin)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4746adantrr 715 . . . . . . . . . 10 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4847adantlrr 719 . . . . . . . . 9 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘ 𝑦) ⊆ 𝑠)
4925, 48sstrd 3977 . . . . . . . 8 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) ∧ (𝑦 ∈ (𝒫 𝑠 ∩ Fin) ∧ 𝑥 𝑦)) → ((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5015, 49rexlimddv 3291 . . . . . . 7 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ ((toInc‘𝑠) ∈ Dirset ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin))) → ((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5150anassrs 470 . . . . . 6 ((((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) ∧ 𝑥 ∈ (𝒫 𝑠 ∩ Fin)) → ((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5251ralrimiva 3182 . . . . 5 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ∀𝑥 ∈ (𝒫 𝑠 ∩ Fin)((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)
5317acsfiel 16925 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → ( 𝑠𝐶 ↔ ( 𝑠𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑠 ∩ Fin)((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)))
5453ad2antrr 724 . . . . 5 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → ( 𝑠𝐶 ↔ ( 𝑠𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑠 ∩ Fin)((mrCls‘𝐶)‘𝑥) ⊆ 𝑠)))
559, 52, 54mpbir2and 711 . . . 4 (((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) ∧ (toInc‘𝑠) ∈ Dirset) → 𝑠𝐶)
5655ex 415 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑠 ∈ 𝒫 𝐶) → ((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
5756ralrimiva 3182 . 2 (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
581, 57jca 514 1 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114  wral 3138  wrex 3139  cin 3935  wss 3936  𝒫 cpw 4539   cuni 4838  cfv 6355  Fincfn 8509  Moorecmre 16853  mrClscmrc 16854  ACScacs 16856  Dirsetcdrs 17537  toInccipo 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-tset 16584  df-ple 16585  df-ocomp 16586  df-mre 16857  df-mrc 16858  df-acs 16860  df-proset 17538  df-drs 17539  df-poset 17556  df-ipo 17762
This theorem is referenced by:  acsdrsel  17777  acsdrscl  17780  acsficl  17781  isacs5  17782  isacs4  17783  isacs3  17784
  Copyright terms: Public domain W3C validator