Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supp0cosupp0 | Structured version Visualization version GIF version |
Description: The support of the composition of two functions is empty if the support of the outer function is empty. (Contributed by AV, 30-May-2019.) |
Ref | Expression |
---|---|
supp0cosupp0 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppco 7993 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡𝐺 “ (𝐹 supp 𝑍))) | |
2 | imaeq2 5954 | . . . 4 ⊢ ((𝐹 supp 𝑍) = ∅ → (◡𝐺 “ (𝐹 supp 𝑍)) = (◡𝐺 “ ∅)) | |
3 | ima0 5974 | . . . 4 ⊢ (◡𝐺 “ ∅) = ∅ | |
4 | 2, 3 | eqtrdi 2795 | . . 3 ⊢ ((𝐹 supp 𝑍) = ∅ → (◡𝐺 “ (𝐹 supp 𝑍)) = ∅) |
5 | 1, 4 | sylan9eq 2799 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) ∧ (𝐹 supp 𝑍) = ∅) → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅) |
6 | 5 | ex 412 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∅c0 4253 ◡ccnv 5579 “ cima 5583 ∘ ccom 5584 (class class class)co 7255 supp csupp 7948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-supp 7949 |
This theorem is referenced by: gsumval3lem2 19422 |
Copyright terms: Public domain | W3C validator |