![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supp0cosupp0 | Structured version Visualization version GIF version |
Description: The support of the composition of two functions is empty if the support of the outer function is empty. (Contributed by AV, 30-May-2019.) |
Ref | Expression |
---|---|
supp0cosupp0 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppco 8190 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡𝐺 “ (𝐹 supp 𝑍))) | |
2 | imaeq2 6055 | . . . 4 ⊢ ((𝐹 supp 𝑍) = ∅ → (◡𝐺 “ (𝐹 supp 𝑍)) = (◡𝐺 “ ∅)) | |
3 | ima0 6076 | . . . 4 ⊢ (◡𝐺 “ ∅) = ∅ | |
4 | 2, 3 | eqtrdi 2788 | . . 3 ⊢ ((𝐹 supp 𝑍) = ∅ → (◡𝐺 “ (𝐹 supp 𝑍)) = ∅) |
5 | 1, 4 | sylan9eq 2792 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) ∧ (𝐹 supp 𝑍) = ∅) → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅) |
6 | 5 | ex 413 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∅c0 4322 ◡ccnv 5675 “ cima 5679 ∘ ccom 5680 (class class class)co 7408 supp csupp 8145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-supp 8146 |
This theorem is referenced by: gsumval3lem2 19773 |
Copyright terms: Public domain | W3C validator |