MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supp0cosupp0 Structured version   Visualization version   GIF version

Theorem supp0cosupp0 8138
Description: The support of the composition of two functions is empty if the support of the outer function is empty. (Contributed by AV, 30-May-2019.)
Assertion
Ref Expression
supp0cosupp0 ((𝐹𝑉𝐺𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹𝐺) supp 𝑍) = ∅))

Proof of Theorem supp0cosupp0
StepHypRef Expression
1 suppco 8136 . . 3 ((𝐹𝑉𝐺𝑊) → ((𝐹𝐺) supp 𝑍) = (𝐺 “ (𝐹 supp 𝑍)))
2 imaeq2 6005 . . . 4 ((𝐹 supp 𝑍) = ∅ → (𝐺 “ (𝐹 supp 𝑍)) = (𝐺 “ ∅))
3 ima0 6026 . . . 4 (𝐺 “ ∅) = ∅
42, 3eqtrdi 2782 . . 3 ((𝐹 supp 𝑍) = ∅ → (𝐺 “ (𝐹 supp 𝑍)) = ∅)
51, 4sylan9eq 2786 . 2 (((𝐹𝑉𝐺𝑊) ∧ (𝐹 supp 𝑍) = ∅) → ((𝐹𝐺) supp 𝑍) = ∅)
65ex 412 1 ((𝐹𝑉𝐺𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹𝐺) supp 𝑍) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  c0 4283  ccnv 5615  cima 5619  ccom 5620  (class class class)co 7346   supp csupp 8090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-supp 8091
This theorem is referenced by:  gsumval3lem2  19816
  Copyright terms: Public domain W3C validator