Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supp0cosupp0 | Structured version Visualization version GIF version |
Description: The support of the composition of two functions is empty if the support of the outer function is empty. (Contributed by AV, 30-May-2019.) |
Ref | Expression |
---|---|
supp0cosupp0 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppco 7971 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡𝐺 “ (𝐹 supp 𝑍))) | |
2 | imaeq2 5942 | . . . 4 ⊢ ((𝐹 supp 𝑍) = ∅ → (◡𝐺 “ (𝐹 supp 𝑍)) = (◡𝐺 “ ∅)) | |
3 | ima0 5962 | . . . 4 ⊢ (◡𝐺 “ ∅) = ∅ | |
4 | 2, 3 | eqtrdi 2796 | . . 3 ⊢ ((𝐹 supp 𝑍) = ∅ → (◡𝐺 “ (𝐹 supp 𝑍)) = ∅) |
5 | 1, 4 | sylan9eq 2800 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) ∧ (𝐹 supp 𝑍) = ∅) → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅) |
6 | 5 | ex 416 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∅c0 4253 ◡ccnv 5567 “ cima 5571 ∘ ccom 5572 (class class class)co 7234 supp csupp 7926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-op 4564 df-uni 4836 df-br 5070 df-opab 5132 df-id 5471 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-iota 6358 df-fun 6402 df-fv 6408 df-ov 7237 df-oprab 7238 df-mpo 7239 df-supp 7927 |
This theorem is referenced by: gsumval3lem2 19323 |
Copyright terms: Public domain | W3C validator |