![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supp0cosupp0 | Structured version Visualization version GIF version |
Description: The support of the composition of two functions is empty if the support of the outer function is empty. (Contributed by AV, 30-May-2019.) |
Ref | Expression |
---|---|
supp0cosupp0 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppco 8221 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡𝐺 “ (𝐹 supp 𝑍))) | |
2 | imaeq2 6065 | . . . 4 ⊢ ((𝐹 supp 𝑍) = ∅ → (◡𝐺 “ (𝐹 supp 𝑍)) = (◡𝐺 “ ∅)) | |
3 | ima0 6086 | . . . 4 ⊢ (◡𝐺 “ ∅) = ∅ | |
4 | 2, 3 | eqtrdi 2782 | . . 3 ⊢ ((𝐹 supp 𝑍) = ∅ → (◡𝐺 “ (𝐹 supp 𝑍)) = ∅) |
5 | 1, 4 | sylan9eq 2786 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) ∧ (𝐹 supp 𝑍) = ∅) → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅) |
6 | 5 | ex 411 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∅c0 4325 ◡ccnv 5681 “ cima 5685 ∘ ccom 5686 (class class class)co 7424 supp csupp 8174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-supp 8175 |
This theorem is referenced by: gsumval3lem2 19904 |
Copyright terms: Public domain | W3C validator |