| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sxsigon | Structured version Visualization version GIF version | ||
| Description: A product sigma-algebra is a sigma-algebra on the product of the bases. (Contributed by Thierry Arnoux, 1-Jun-2017.) |
| Ref | Expression |
|---|---|
| sxsigon | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ (sigAlgebra‘(∪ 𝑆 × ∪ 𝑇))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sxsiga 34188 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ ∪ ran sigAlgebra) | |
| 2 | eqid 2730 | . . . 4 ⊢ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) | |
| 3 | eqid 2730 | . . . 4 ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 4 | eqid 2730 | . . . 4 ⊢ ∪ 𝑇 = ∪ 𝑇 | |
| 5 | 2, 3, 4 | txuni2 23459 | . . 3 ⊢ (∪ 𝑆 × ∪ 𝑇) = ∪ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) |
| 6 | 2 | sxval 34187 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
| 7 | 6 | unieqd 4887 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → ∪ (𝑆 ×s 𝑇) = ∪ (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
| 8 | mpoexga 8059 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ∈ V) | |
| 9 | rnexg 7881 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ∈ V → ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ∈ V) | |
| 10 | unisg 34140 | . . . . 5 ⊢ (ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ∈ V → ∪ (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) = ∪ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) | |
| 11 | 8, 9, 10 | 3syl 18 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → ∪ (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) = ∪ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) |
| 12 | 7, 11 | eqtrd 2765 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → ∪ (𝑆 ×s 𝑇) = ∪ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) |
| 13 | 5, 12 | eqtr4id 2784 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (∪ 𝑆 × ∪ 𝑇) = ∪ (𝑆 ×s 𝑇)) |
| 14 | issgon 34120 | . 2 ⊢ ((𝑆 ×s 𝑇) ∈ (sigAlgebra‘(∪ 𝑆 × ∪ 𝑇)) ↔ ((𝑆 ×s 𝑇) ∈ ∪ ran sigAlgebra ∧ (∪ 𝑆 × ∪ 𝑇) = ∪ (𝑆 ×s 𝑇))) | |
| 15 | 1, 13, 14 | sylanbrc 583 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ (sigAlgebra‘(∪ 𝑆 × ∪ 𝑇))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cuni 4874 × cxp 5639 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 sigAlgebracsiga 34105 sigaGencsigagen 34135 ×s csx 34185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-siga 34106 df-sigagen 34136 df-sx 34186 |
| This theorem is referenced by: sxuni 34190 |
| Copyright terms: Public domain | W3C validator |