Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxsigon Structured version   Visualization version   GIF version

Theorem sxsigon 34182
Description: A product sigma-algebra is a sigma-algebra on the product of the bases. (Contributed by Thierry Arnoux, 1-Jun-2017.)
Assertion
Ref Expression
sxsigon ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ (sigAlgebra‘( 𝑆 × 𝑇)))

Proof of Theorem sxsigon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sxsiga 34181 . 2 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)
2 eqid 2729 . . . 4 ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))
3 eqid 2729 . . . 4 𝑆 = 𝑆
4 eqid 2729 . . . 4 𝑇 = 𝑇
52, 3, 4txuni2 23452 . . 3 ( 𝑆 × 𝑇) = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))
62sxval 34180 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
76unieqd 4884 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
8 mpoexga 8056 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ∈ V)
9 rnexg 7878 . . . . 5 ((𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ∈ V → ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ∈ V)
10 unisg 34133 . . . . 5 (ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ∈ V → (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))) = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)))
118, 9, 103syl 18 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))) = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)))
127, 11eqtrd 2764 . . 3 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)))
135, 12eqtr4id 2783 . 2 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
14 issgon 34113 . 2 ((𝑆 ×s 𝑇) ∈ (sigAlgebra‘( 𝑆 × 𝑇)) ↔ ((𝑆 ×s 𝑇) ∈ ran sigAlgebra ∧ ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇)))
151, 13, 14sylanbrc 583 1 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ (sigAlgebra‘( 𝑆 × 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447   cuni 4871   × cxp 5636  ran crn 5639  cfv 6511  (class class class)co 7387  cmpo 7389  sigAlgebracsiga 34098  sigaGencsigagen 34128   ×s csx 34178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-siga 34099  df-sigagen 34129  df-sx 34179
This theorem is referenced by:  sxuni  34183
  Copyright terms: Public domain W3C validator