Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sxsigon | Structured version Visualization version GIF version |
Description: A product sigma-algebra is a sigma-algebra on the product of the bases. (Contributed by Thierry Arnoux, 1-Jun-2017.) |
Ref | Expression |
---|---|
sxsigon | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ (sigAlgebra‘(∪ 𝑆 × ∪ 𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sxsiga 32159 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ ∪ ran sigAlgebra) | |
2 | eqid 2738 | . . . 4 ⊢ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) | |
3 | eqid 2738 | . . . 4 ⊢ ∪ 𝑆 = ∪ 𝑆 | |
4 | eqid 2738 | . . . 4 ⊢ ∪ 𝑇 = ∪ 𝑇 | |
5 | 2, 3, 4 | txuni2 22716 | . . 3 ⊢ (∪ 𝑆 × ∪ 𝑇) = ∪ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) |
6 | 2 | sxval 32158 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
7 | 6 | unieqd 4853 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → ∪ (𝑆 ×s 𝑇) = ∪ (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
8 | mpoexga 7918 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ∈ V) | |
9 | rnexg 7751 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ∈ V → ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ∈ V) | |
10 | unisg 32111 | . . . . 5 ⊢ (ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ∈ V → ∪ (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) = ∪ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) | |
11 | 8, 9, 10 | 3syl 18 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → ∪ (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) = ∪ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) |
12 | 7, 11 | eqtrd 2778 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → ∪ (𝑆 ×s 𝑇) = ∪ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) |
13 | 5, 12 | eqtr4id 2797 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (∪ 𝑆 × ∪ 𝑇) = ∪ (𝑆 ×s 𝑇)) |
14 | issgon 32091 | . 2 ⊢ ((𝑆 ×s 𝑇) ∈ (sigAlgebra‘(∪ 𝑆 × ∪ 𝑇)) ↔ ((𝑆 ×s 𝑇) ∈ ∪ ran sigAlgebra ∧ (∪ 𝑆 × ∪ 𝑇) = ∪ (𝑆 ×s 𝑇))) | |
15 | 1, 13, 14 | sylanbrc 583 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ (sigAlgebra‘(∪ 𝑆 × ∪ 𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cuni 4839 × cxp 5587 ran crn 5590 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 sigAlgebracsiga 32076 sigaGencsigagen 32106 ×s csx 32156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-siga 32077 df-sigagen 32107 df-sx 32157 |
This theorem is referenced by: sxuni 32161 |
Copyright terms: Public domain | W3C validator |