Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmco2 Structured version   Visualization version   GIF version

Theorem mbfmco2 32232
Description: The pair building of two measurable functions is measurable. ( cf. cnmpt1t 22816). (Contributed by Thierry Arnoux, 6-Jun-2017.)
Hypotheses
Ref Expression
mbfmco.1 (𝜑𝑅 ran sigAlgebra)
mbfmco.2 (𝜑𝑆 ran sigAlgebra)
mbfmco.3 (𝜑𝑇 ran sigAlgebra)
mbfmco2.4 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
mbfmco2.5 (𝜑𝐺 ∈ (𝑅MblFnM𝑇))
mbfmco2.6 𝐻 = (𝑥 𝑅 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
Assertion
Ref Expression
mbfmco2 (𝜑𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)))
Distinct variable groups:   𝑥,𝑅   𝑥,𝑆   𝑥,𝑇   𝜑,𝑥   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻

Proof of Theorem mbfmco2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmco.1 . . . . . . 7 (𝜑𝑅 ran sigAlgebra)
2 mbfmco.2 . . . . . . 7 (𝜑𝑆 ran sigAlgebra)
3 mbfmco2.4 . . . . . . 7 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
41, 2, 3mbfmf 32222 . . . . . 6 (𝜑𝐹: 𝑅 𝑆)
54ffvelrnda 6961 . . . . 5 ((𝜑𝑥 𝑅) → (𝐹𝑥) ∈ 𝑆)
6 mbfmco.3 . . . . . . 7 (𝜑𝑇 ran sigAlgebra)
7 mbfmco2.5 . . . . . . 7 (𝜑𝐺 ∈ (𝑅MblFnM𝑇))
81, 6, 7mbfmf 32222 . . . . . 6 (𝜑𝐺: 𝑅 𝑇)
98ffvelrnda 6961 . . . . 5 ((𝜑𝑥 𝑅) → (𝐺𝑥) ∈ 𝑇)
10 opelxpi 5626 . . . . 5 (((𝐹𝑥) ∈ 𝑆 ∧ (𝐺𝑥) ∈ 𝑇) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑆 × 𝑇))
115, 9, 10syl2anc 584 . . . 4 ((𝜑𝑥 𝑅) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑆 × 𝑇))
12 sxuni 32161 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
132, 6, 12syl2anc 584 . . . . 5 (𝜑 → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
1413adantr 481 . . . 4 ((𝜑𝑥 𝑅) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
1511, 14eleqtrd 2841 . . 3 ((𝜑𝑥 𝑅) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑆 ×s 𝑇))
16 mbfmco2.6 . . 3 𝐻 = (𝑥 𝑅 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
1715, 16fmptd 6988 . 2 (𝜑𝐻: 𝑅 (𝑆 ×s 𝑇))
18 eqid 2738 . . . . 5 (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) = (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))
19 vex 3436 . . . . . 6 𝑎 ∈ V
20 vex 3436 . . . . . 6 𝑏 ∈ V
2119, 20xpex 7603 . . . . 5 (𝑎 × 𝑏) ∈ V
2218, 21elrnmpo 7410 . . . 4 (𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) ↔ ∃𝑎𝑆𝑏𝑇 𝑐 = (𝑎 × 𝑏))
23 simp3 1137 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝑐 = (𝑎 × 𝑏))
2423imaeq2d 5969 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → (𝐻𝑐) = (𝐻 “ (𝑎 × 𝑏)))
25 simp1 1135 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝜑)
26 simp2l 1198 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝑎𝑆)
27 simp2r 1199 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝑏𝑇)
284, 8, 16xppreima2 30988 . . . . . . . . . . 11 (𝜑 → (𝐻 “ (𝑎 × 𝑏)) = ((𝐹𝑎) ∩ (𝐺𝑏)))
29283ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑎𝑆𝑏𝑇) → (𝐻 “ (𝑎 × 𝑏)) = ((𝐹𝑎) ∩ (𝐺𝑏)))
3013ad2ant1 1132 . . . . . . . . . . 11 ((𝜑𝑎𝑆𝑏𝑇) → 𝑅 ran sigAlgebra)
3123ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑆 ran sigAlgebra)
3233ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝐹 ∈ (𝑅MblFnM𝑆))
33 simp2 1136 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑎𝑆)
3430, 31, 32, 33mbfmcnvima 32224 . . . . . . . . . . 11 ((𝜑𝑎𝑆𝑏𝑇) → (𝐹𝑎) ∈ 𝑅)
3563ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑇 ran sigAlgebra)
3673ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝐺 ∈ (𝑅MblFnM𝑇))
37 simp3 1137 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑏𝑇)
3830, 35, 36, 37mbfmcnvima 32224 . . . . . . . . . . 11 ((𝜑𝑎𝑆𝑏𝑇) → (𝐺𝑏) ∈ 𝑅)
39 inelsiga 32103 . . . . . . . . . . 11 ((𝑅 ran sigAlgebra ∧ (𝐹𝑎) ∈ 𝑅 ∧ (𝐺𝑏) ∈ 𝑅) → ((𝐹𝑎) ∩ (𝐺𝑏)) ∈ 𝑅)
4030, 34, 38, 39syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑎𝑆𝑏𝑇) → ((𝐹𝑎) ∩ (𝐺𝑏)) ∈ 𝑅)
4129, 40eqeltrd 2839 . . . . . . . . 9 ((𝜑𝑎𝑆𝑏𝑇) → (𝐻 “ (𝑎 × 𝑏)) ∈ 𝑅)
4225, 26, 27, 41syl3anc 1370 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → (𝐻 “ (𝑎 × 𝑏)) ∈ 𝑅)
4324, 42eqeltrd 2839 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → (𝐻𝑐) ∈ 𝑅)
44433expia 1120 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝑇)) → (𝑐 = (𝑎 × 𝑏) → (𝐻𝑐) ∈ 𝑅))
4544rexlimdvva 3223 . . . . 5 (𝜑 → (∃𝑎𝑆𝑏𝑇 𝑐 = (𝑎 × 𝑏) → (𝐻𝑐) ∈ 𝑅))
4645imp 407 . . . 4 ((𝜑 ∧ ∃𝑎𝑆𝑏𝑇 𝑐 = (𝑎 × 𝑏)) → (𝐻𝑐) ∈ 𝑅)
4722, 46sylan2b 594 . . 3 ((𝜑𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))) → (𝐻𝑐) ∈ 𝑅)
4847ralrimiva 3103 . 2 (𝜑 → ∀𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))(𝐻𝑐) ∈ 𝑅)
49 eqid 2738 . . . . 5 ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) = ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))
5049txbasex 22717 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) ∈ V)
512, 6, 50syl2anc 584 . . 3 (𝜑 → ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) ∈ V)
5249sxval 32158 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))))
532, 6, 52syl2anc 584 . . 3 (𝜑 → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))))
5451, 1, 53imambfm 32229 . 2 (𝜑 → (𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)) ↔ (𝐻: 𝑅 (𝑆 ×s 𝑇) ∧ ∀𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))(𝐻𝑐) ∈ 𝑅)))
5517, 48, 54mpbir2and 710 1 (𝜑𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cin 3886  cop 4567   cuni 4839  cmpt 5157   × cxp 5587  ccnv 5588  ran crn 5590  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  sigAlgebracsiga 32076  sigaGencsigagen 32106   ×s csx 32156  MblFnMcmbfm 32217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-ac 9872  df-siga 32077  df-sigagen 32107  df-sx 32157  df-mbfm 32218
This theorem is referenced by:  rrvadd  32419
  Copyright terms: Public domain W3C validator