Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmco2 Structured version   Visualization version   GIF version

Theorem mbfmco2 31805
Description: The pair building of two measurable functions is measurable. ( cf. cnmpt1t 22419). (Contributed by Thierry Arnoux, 6-Jun-2017.)
Hypotheses
Ref Expression
mbfmco.1 (𝜑𝑅 ran sigAlgebra)
mbfmco.2 (𝜑𝑆 ran sigAlgebra)
mbfmco.3 (𝜑𝑇 ran sigAlgebra)
mbfmco2.4 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
mbfmco2.5 (𝜑𝐺 ∈ (𝑅MblFnM𝑇))
mbfmco2.6 𝐻 = (𝑥 𝑅 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
Assertion
Ref Expression
mbfmco2 (𝜑𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)))
Distinct variable groups:   𝑥,𝑅   𝑥,𝑆   𝑥,𝑇   𝜑,𝑥   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻

Proof of Theorem mbfmco2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmco.1 . . . . . . 7 (𝜑𝑅 ran sigAlgebra)
2 mbfmco.2 . . . . . . 7 (𝜑𝑆 ran sigAlgebra)
3 mbfmco2.4 . . . . . . 7 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
41, 2, 3mbfmf 31795 . . . . . 6 (𝜑𝐹: 𝑅 𝑆)
54ffvelrnda 6864 . . . . 5 ((𝜑𝑥 𝑅) → (𝐹𝑥) ∈ 𝑆)
6 mbfmco.3 . . . . . . 7 (𝜑𝑇 ran sigAlgebra)
7 mbfmco2.5 . . . . . . 7 (𝜑𝐺 ∈ (𝑅MblFnM𝑇))
81, 6, 7mbfmf 31795 . . . . . 6 (𝜑𝐺: 𝑅 𝑇)
98ffvelrnda 6864 . . . . 5 ((𝜑𝑥 𝑅) → (𝐺𝑥) ∈ 𝑇)
10 opelxpi 5563 . . . . 5 (((𝐹𝑥) ∈ 𝑆 ∧ (𝐺𝑥) ∈ 𝑇) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑆 × 𝑇))
115, 9, 10syl2anc 587 . . . 4 ((𝜑𝑥 𝑅) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑆 × 𝑇))
12 sxuni 31734 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
132, 6, 12syl2anc 587 . . . . 5 (𝜑 → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
1413adantr 484 . . . 4 ((𝜑𝑥 𝑅) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
1511, 14eleqtrd 2836 . . 3 ((𝜑𝑥 𝑅) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑆 ×s 𝑇))
16 mbfmco2.6 . . 3 𝐻 = (𝑥 𝑅 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
1715, 16fmptd 6891 . 2 (𝜑𝐻: 𝑅 (𝑆 ×s 𝑇))
18 eqid 2739 . . . . 5 (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) = (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))
19 vex 3403 . . . . . 6 𝑎 ∈ V
20 vex 3403 . . . . . 6 𝑏 ∈ V
2119, 20xpex 7497 . . . . 5 (𝑎 × 𝑏) ∈ V
2218, 21elrnmpo 7305 . . . 4 (𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) ↔ ∃𝑎𝑆𝑏𝑇 𝑐 = (𝑎 × 𝑏))
23 simp3 1139 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝑐 = (𝑎 × 𝑏))
2423imaeq2d 5904 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → (𝐻𝑐) = (𝐻 “ (𝑎 × 𝑏)))
25 simp1 1137 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝜑)
26 simp2l 1200 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝑎𝑆)
27 simp2r 1201 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝑏𝑇)
284, 8, 16xppreima2 30565 . . . . . . . . . . 11 (𝜑 → (𝐻 “ (𝑎 × 𝑏)) = ((𝐹𝑎) ∩ (𝐺𝑏)))
29283ad2ant1 1134 . . . . . . . . . 10 ((𝜑𝑎𝑆𝑏𝑇) → (𝐻 “ (𝑎 × 𝑏)) = ((𝐹𝑎) ∩ (𝐺𝑏)))
3013ad2ant1 1134 . . . . . . . . . . 11 ((𝜑𝑎𝑆𝑏𝑇) → 𝑅 ran sigAlgebra)
3123ad2ant1 1134 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑆 ran sigAlgebra)
3233ad2ant1 1134 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝐹 ∈ (𝑅MblFnM𝑆))
33 simp2 1138 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑎𝑆)
3430, 31, 32, 33mbfmcnvima 31797 . . . . . . . . . . 11 ((𝜑𝑎𝑆𝑏𝑇) → (𝐹𝑎) ∈ 𝑅)
3563ad2ant1 1134 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑇 ran sigAlgebra)
3673ad2ant1 1134 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝐺 ∈ (𝑅MblFnM𝑇))
37 simp3 1139 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑏𝑇)
3830, 35, 36, 37mbfmcnvima 31797 . . . . . . . . . . 11 ((𝜑𝑎𝑆𝑏𝑇) → (𝐺𝑏) ∈ 𝑅)
39 inelsiga 31676 . . . . . . . . . . 11 ((𝑅 ran sigAlgebra ∧ (𝐹𝑎) ∈ 𝑅 ∧ (𝐺𝑏) ∈ 𝑅) → ((𝐹𝑎) ∩ (𝐺𝑏)) ∈ 𝑅)
4030, 34, 38, 39syl3anc 1372 . . . . . . . . . 10 ((𝜑𝑎𝑆𝑏𝑇) → ((𝐹𝑎) ∩ (𝐺𝑏)) ∈ 𝑅)
4129, 40eqeltrd 2834 . . . . . . . . 9 ((𝜑𝑎𝑆𝑏𝑇) → (𝐻 “ (𝑎 × 𝑏)) ∈ 𝑅)
4225, 26, 27, 41syl3anc 1372 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → (𝐻 “ (𝑎 × 𝑏)) ∈ 𝑅)
4324, 42eqeltrd 2834 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → (𝐻𝑐) ∈ 𝑅)
44433expia 1122 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝑇)) → (𝑐 = (𝑎 × 𝑏) → (𝐻𝑐) ∈ 𝑅))
4544rexlimdvva 3205 . . . . 5 (𝜑 → (∃𝑎𝑆𝑏𝑇 𝑐 = (𝑎 × 𝑏) → (𝐻𝑐) ∈ 𝑅))
4645imp 410 . . . 4 ((𝜑 ∧ ∃𝑎𝑆𝑏𝑇 𝑐 = (𝑎 × 𝑏)) → (𝐻𝑐) ∈ 𝑅)
4722, 46sylan2b 597 . . 3 ((𝜑𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))) → (𝐻𝑐) ∈ 𝑅)
4847ralrimiva 3097 . 2 (𝜑 → ∀𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))(𝐻𝑐) ∈ 𝑅)
49 eqid 2739 . . . . 5 ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) = ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))
5049txbasex 22320 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) ∈ V)
512, 6, 50syl2anc 587 . . 3 (𝜑 → ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) ∈ V)
5249sxval 31731 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))))
532, 6, 52syl2anc 587 . . 3 (𝜑 → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))))
5451, 1, 53imambfm 31802 . 2 (𝜑 → (𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)) ↔ (𝐻: 𝑅 (𝑆 ×s 𝑇) ∧ ∀𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))(𝐻𝑐) ∈ 𝑅)))
5517, 48, 54mpbir2and 713 1 (𝜑𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3054  wrex 3055  Vcvv 3399  cin 3843  cop 4523   cuni 4797  cmpt 5111   × cxp 5524  ccnv 5525  ran crn 5527  cima 5529  wf 6336  cfv 6340  (class class class)co 7173  cmpo 7175  sigAlgebracsiga 31649  sigaGencsigagen 31679   ×s csx 31729  MblFnMcmbfm 31790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-inf2 9180  ax-ac2 9966
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-2o 8135  df-er 8323  df-map 8442  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-oi 9050  df-dju 9406  df-card 9444  df-acn 9447  df-ac 9619  df-siga 31650  df-sigagen 31680  df-sx 31730  df-mbfm 31791
This theorem is referenced by:  rrvadd  31992
  Copyright terms: Public domain W3C validator