Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmco2 Structured version   Visualization version   GIF version

Theorem mbfmco2 32132
Description: The pair building of two measurable functions is measurable. ( cf. cnmpt1t 22724). (Contributed by Thierry Arnoux, 6-Jun-2017.)
Hypotheses
Ref Expression
mbfmco.1 (𝜑𝑅 ran sigAlgebra)
mbfmco.2 (𝜑𝑆 ran sigAlgebra)
mbfmco.3 (𝜑𝑇 ran sigAlgebra)
mbfmco2.4 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
mbfmco2.5 (𝜑𝐺 ∈ (𝑅MblFnM𝑇))
mbfmco2.6 𝐻 = (𝑥 𝑅 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
Assertion
Ref Expression
mbfmco2 (𝜑𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)))
Distinct variable groups:   𝑥,𝑅   𝑥,𝑆   𝑥,𝑇   𝜑,𝑥   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻

Proof of Theorem mbfmco2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmco.1 . . . . . . 7 (𝜑𝑅 ran sigAlgebra)
2 mbfmco.2 . . . . . . 7 (𝜑𝑆 ran sigAlgebra)
3 mbfmco2.4 . . . . . . 7 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
41, 2, 3mbfmf 32122 . . . . . 6 (𝜑𝐹: 𝑅 𝑆)
54ffvelrnda 6943 . . . . 5 ((𝜑𝑥 𝑅) → (𝐹𝑥) ∈ 𝑆)
6 mbfmco.3 . . . . . . 7 (𝜑𝑇 ran sigAlgebra)
7 mbfmco2.5 . . . . . . 7 (𝜑𝐺 ∈ (𝑅MblFnM𝑇))
81, 6, 7mbfmf 32122 . . . . . 6 (𝜑𝐺: 𝑅 𝑇)
98ffvelrnda 6943 . . . . 5 ((𝜑𝑥 𝑅) → (𝐺𝑥) ∈ 𝑇)
10 opelxpi 5617 . . . . 5 (((𝐹𝑥) ∈ 𝑆 ∧ (𝐺𝑥) ∈ 𝑇) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑆 × 𝑇))
115, 9, 10syl2anc 583 . . . 4 ((𝜑𝑥 𝑅) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑆 × 𝑇))
12 sxuni 32061 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
132, 6, 12syl2anc 583 . . . . 5 (𝜑 → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
1413adantr 480 . . . 4 ((𝜑𝑥 𝑅) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
1511, 14eleqtrd 2841 . . 3 ((𝜑𝑥 𝑅) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑆 ×s 𝑇))
16 mbfmco2.6 . . 3 𝐻 = (𝑥 𝑅 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
1715, 16fmptd 6970 . 2 (𝜑𝐻: 𝑅 (𝑆 ×s 𝑇))
18 eqid 2738 . . . . 5 (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) = (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))
19 vex 3426 . . . . . 6 𝑎 ∈ V
20 vex 3426 . . . . . 6 𝑏 ∈ V
2119, 20xpex 7581 . . . . 5 (𝑎 × 𝑏) ∈ V
2218, 21elrnmpo 7388 . . . 4 (𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) ↔ ∃𝑎𝑆𝑏𝑇 𝑐 = (𝑎 × 𝑏))
23 simp3 1136 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝑐 = (𝑎 × 𝑏))
2423imaeq2d 5958 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → (𝐻𝑐) = (𝐻 “ (𝑎 × 𝑏)))
25 simp1 1134 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝜑)
26 simp2l 1197 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝑎𝑆)
27 simp2r 1198 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝑏𝑇)
284, 8, 16xppreima2 30889 . . . . . . . . . . 11 (𝜑 → (𝐻 “ (𝑎 × 𝑏)) = ((𝐹𝑎) ∩ (𝐺𝑏)))
29283ad2ant1 1131 . . . . . . . . . 10 ((𝜑𝑎𝑆𝑏𝑇) → (𝐻 “ (𝑎 × 𝑏)) = ((𝐹𝑎) ∩ (𝐺𝑏)))
3013ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑎𝑆𝑏𝑇) → 𝑅 ran sigAlgebra)
3123ad2ant1 1131 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑆 ran sigAlgebra)
3233ad2ant1 1131 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝐹 ∈ (𝑅MblFnM𝑆))
33 simp2 1135 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑎𝑆)
3430, 31, 32, 33mbfmcnvima 32124 . . . . . . . . . . 11 ((𝜑𝑎𝑆𝑏𝑇) → (𝐹𝑎) ∈ 𝑅)
3563ad2ant1 1131 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑇 ran sigAlgebra)
3673ad2ant1 1131 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝐺 ∈ (𝑅MblFnM𝑇))
37 simp3 1136 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑏𝑇)
3830, 35, 36, 37mbfmcnvima 32124 . . . . . . . . . . 11 ((𝜑𝑎𝑆𝑏𝑇) → (𝐺𝑏) ∈ 𝑅)
39 inelsiga 32003 . . . . . . . . . . 11 ((𝑅 ran sigAlgebra ∧ (𝐹𝑎) ∈ 𝑅 ∧ (𝐺𝑏) ∈ 𝑅) → ((𝐹𝑎) ∩ (𝐺𝑏)) ∈ 𝑅)
4030, 34, 38, 39syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑎𝑆𝑏𝑇) → ((𝐹𝑎) ∩ (𝐺𝑏)) ∈ 𝑅)
4129, 40eqeltrd 2839 . . . . . . . . 9 ((𝜑𝑎𝑆𝑏𝑇) → (𝐻 “ (𝑎 × 𝑏)) ∈ 𝑅)
4225, 26, 27, 41syl3anc 1369 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → (𝐻 “ (𝑎 × 𝑏)) ∈ 𝑅)
4324, 42eqeltrd 2839 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → (𝐻𝑐) ∈ 𝑅)
44433expia 1119 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝑇)) → (𝑐 = (𝑎 × 𝑏) → (𝐻𝑐) ∈ 𝑅))
4544rexlimdvva 3222 . . . . 5 (𝜑 → (∃𝑎𝑆𝑏𝑇 𝑐 = (𝑎 × 𝑏) → (𝐻𝑐) ∈ 𝑅))
4645imp 406 . . . 4 ((𝜑 ∧ ∃𝑎𝑆𝑏𝑇 𝑐 = (𝑎 × 𝑏)) → (𝐻𝑐) ∈ 𝑅)
4722, 46sylan2b 593 . . 3 ((𝜑𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))) → (𝐻𝑐) ∈ 𝑅)
4847ralrimiva 3107 . 2 (𝜑 → ∀𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))(𝐻𝑐) ∈ 𝑅)
49 eqid 2738 . . . . 5 ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) = ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))
5049txbasex 22625 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) ∈ V)
512, 6, 50syl2anc 583 . . 3 (𝜑 → ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) ∈ V)
5249sxval 32058 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))))
532, 6, 52syl2anc 583 . . 3 (𝜑 → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))))
5451, 1, 53imambfm 32129 . 2 (𝜑 → (𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)) ↔ (𝐻: 𝑅 (𝑆 ×s 𝑇) ∧ ∀𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))(𝐻𝑐) ∈ 𝑅)))
5517, 48, 54mpbir2and 709 1 (𝜑𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cin 3882  cop 4564   cuni 4836  cmpt 5153   × cxp 5578  ccnv 5579  ran crn 5581  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  sigAlgebracsiga 31976  sigaGencsigagen 32006   ×s csx 32056  MblFnMcmbfm 32117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-ac2 10150
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-ac 9803  df-siga 31977  df-sigagen 32007  df-sx 32057  df-mbfm 32118
This theorem is referenced by:  rrvadd  32319
  Copyright terms: Public domain W3C validator