Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmco2 Structured version   Visualization version   GIF version

Theorem mbfmco2 34267
Description: The pair building of two measurable functions is measurable. ( cf. cnmpt1t 23673). (Contributed by Thierry Arnoux, 6-Jun-2017.)
Hypotheses
Ref Expression
mbfmco.1 (𝜑𝑅 ran sigAlgebra)
mbfmco.2 (𝜑𝑆 ran sigAlgebra)
mbfmco.3 (𝜑𝑇 ran sigAlgebra)
mbfmco2.4 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
mbfmco2.5 (𝜑𝐺 ∈ (𝑅MblFnM𝑇))
mbfmco2.6 𝐻 = (𝑥 𝑅 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
Assertion
Ref Expression
mbfmco2 (𝜑𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)))
Distinct variable groups:   𝑥,𝑅   𝑥,𝑆   𝑥,𝑇   𝜑,𝑥   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻

Proof of Theorem mbfmco2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmco.1 . . . . . . 7 (𝜑𝑅 ran sigAlgebra)
2 mbfmco.2 . . . . . . 7 (𝜑𝑆 ran sigAlgebra)
3 mbfmco2.4 . . . . . . 7 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
41, 2, 3mbfmf 34255 . . . . . 6 (𝜑𝐹: 𝑅 𝑆)
54ffvelcdmda 7104 . . . . 5 ((𝜑𝑥 𝑅) → (𝐹𝑥) ∈ 𝑆)
6 mbfmco.3 . . . . . . 7 (𝜑𝑇 ran sigAlgebra)
7 mbfmco2.5 . . . . . . 7 (𝜑𝐺 ∈ (𝑅MblFnM𝑇))
81, 6, 7mbfmf 34255 . . . . . 6 (𝜑𝐺: 𝑅 𝑇)
98ffvelcdmda 7104 . . . . 5 ((𝜑𝑥 𝑅) → (𝐺𝑥) ∈ 𝑇)
10 opelxpi 5722 . . . . 5 (((𝐹𝑥) ∈ 𝑆 ∧ (𝐺𝑥) ∈ 𝑇) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑆 × 𝑇))
115, 9, 10syl2anc 584 . . . 4 ((𝜑𝑥 𝑅) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑆 × 𝑇))
12 sxuni 34194 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
132, 6, 12syl2anc 584 . . . . 5 (𝜑 → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
1413adantr 480 . . . 4 ((𝜑𝑥 𝑅) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
1511, 14eleqtrd 2843 . . 3 ((𝜑𝑥 𝑅) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑆 ×s 𝑇))
16 mbfmco2.6 . . 3 𝐻 = (𝑥 𝑅 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
1715, 16fmptd 7134 . 2 (𝜑𝐻: 𝑅 (𝑆 ×s 𝑇))
18 eqid 2737 . . . . 5 (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) = (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))
19 vex 3484 . . . . . 6 𝑎 ∈ V
20 vex 3484 . . . . . 6 𝑏 ∈ V
2119, 20xpex 7773 . . . . 5 (𝑎 × 𝑏) ∈ V
2218, 21elrnmpo 7569 . . . 4 (𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) ↔ ∃𝑎𝑆𝑏𝑇 𝑐 = (𝑎 × 𝑏))
23 simp3 1139 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝑐 = (𝑎 × 𝑏))
2423imaeq2d 6078 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → (𝐻𝑐) = (𝐻 “ (𝑎 × 𝑏)))
25 simp1 1137 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝜑)
26 simp2l 1200 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝑎𝑆)
27 simp2r 1201 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝑏𝑇)
284, 8, 16xppreima2 32661 . . . . . . . . . . 11 (𝜑 → (𝐻 “ (𝑎 × 𝑏)) = ((𝐹𝑎) ∩ (𝐺𝑏)))
29283ad2ant1 1134 . . . . . . . . . 10 ((𝜑𝑎𝑆𝑏𝑇) → (𝐻 “ (𝑎 × 𝑏)) = ((𝐹𝑎) ∩ (𝐺𝑏)))
3013ad2ant1 1134 . . . . . . . . . . 11 ((𝜑𝑎𝑆𝑏𝑇) → 𝑅 ran sigAlgebra)
3123ad2ant1 1134 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑆 ran sigAlgebra)
3233ad2ant1 1134 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝐹 ∈ (𝑅MblFnM𝑆))
33 simp2 1138 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑎𝑆)
3430, 31, 32, 33mbfmcnvima 34257 . . . . . . . . . . 11 ((𝜑𝑎𝑆𝑏𝑇) → (𝐹𝑎) ∈ 𝑅)
3563ad2ant1 1134 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑇 ran sigAlgebra)
3673ad2ant1 1134 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝐺 ∈ (𝑅MblFnM𝑇))
37 simp3 1139 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑏𝑇)
3830, 35, 36, 37mbfmcnvima 34257 . . . . . . . . . . 11 ((𝜑𝑎𝑆𝑏𝑇) → (𝐺𝑏) ∈ 𝑅)
39 inelsiga 34136 . . . . . . . . . . 11 ((𝑅 ran sigAlgebra ∧ (𝐹𝑎) ∈ 𝑅 ∧ (𝐺𝑏) ∈ 𝑅) → ((𝐹𝑎) ∩ (𝐺𝑏)) ∈ 𝑅)
4030, 34, 38, 39syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑎𝑆𝑏𝑇) → ((𝐹𝑎) ∩ (𝐺𝑏)) ∈ 𝑅)
4129, 40eqeltrd 2841 . . . . . . . . 9 ((𝜑𝑎𝑆𝑏𝑇) → (𝐻 “ (𝑎 × 𝑏)) ∈ 𝑅)
4225, 26, 27, 41syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → (𝐻 “ (𝑎 × 𝑏)) ∈ 𝑅)
4324, 42eqeltrd 2841 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → (𝐻𝑐) ∈ 𝑅)
44433expia 1122 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝑇)) → (𝑐 = (𝑎 × 𝑏) → (𝐻𝑐) ∈ 𝑅))
4544rexlimdvva 3213 . . . . 5 (𝜑 → (∃𝑎𝑆𝑏𝑇 𝑐 = (𝑎 × 𝑏) → (𝐻𝑐) ∈ 𝑅))
4645imp 406 . . . 4 ((𝜑 ∧ ∃𝑎𝑆𝑏𝑇 𝑐 = (𝑎 × 𝑏)) → (𝐻𝑐) ∈ 𝑅)
4722, 46sylan2b 594 . . 3 ((𝜑𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))) → (𝐻𝑐) ∈ 𝑅)
4847ralrimiva 3146 . 2 (𝜑 → ∀𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))(𝐻𝑐) ∈ 𝑅)
49 eqid 2737 . . . . 5 ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) = ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))
5049txbasex 23574 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) ∈ V)
512, 6, 50syl2anc 584 . . 3 (𝜑 → ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) ∈ V)
5249sxval 34191 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))))
532, 6, 52syl2anc 584 . . 3 (𝜑 → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))))
5451, 1, 53imambfm 34264 . 2 (𝜑 → (𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)) ↔ (𝐻: 𝑅 (𝑆 ×s 𝑇) ∧ ∀𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))(𝐻𝑐) ∈ 𝑅)))
5517, 48, 54mpbir2and 713 1 (𝜑𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  cin 3950  cop 4632   cuni 4907  cmpt 5225   × cxp 5683  ccnv 5684  ran crn 5686  cima 5688  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  sigAlgebracsiga 34109  sigaGencsigagen 34139   ×s csx 34189  MblFnMcmbfm 34250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-ac2 10503
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-ac 10156  df-siga 34110  df-sigagen 34140  df-sx 34190  df-mbfm 34251
This theorem is referenced by:  rrvadd  34454
  Copyright terms: Public domain W3C validator