Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmco2 Structured version   Visualization version   GIF version

Theorem mbfmco2 31633
Description: The pair building of two measurable functions is measurable. ( cf. cnmpt1t 22270). (Contributed by Thierry Arnoux, 6-Jun-2017.)
Hypotheses
Ref Expression
mbfmco.1 (𝜑𝑅 ran sigAlgebra)
mbfmco.2 (𝜑𝑆 ran sigAlgebra)
mbfmco.3 (𝜑𝑇 ran sigAlgebra)
mbfmco2.4 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
mbfmco2.5 (𝜑𝐺 ∈ (𝑅MblFnM𝑇))
mbfmco2.6 𝐻 = (𝑥 𝑅 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
Assertion
Ref Expression
mbfmco2 (𝜑𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)))
Distinct variable groups:   𝑥,𝑅   𝑥,𝑆   𝑥,𝑇   𝜑,𝑥   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻

Proof of Theorem mbfmco2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmco.1 . . . . . . 7 (𝜑𝑅 ran sigAlgebra)
2 mbfmco.2 . . . . . . 7 (𝜑𝑆 ran sigAlgebra)
3 mbfmco2.4 . . . . . . 7 (𝜑𝐹 ∈ (𝑅MblFnM𝑆))
41, 2, 3mbfmf 31623 . . . . . 6 (𝜑𝐹: 𝑅 𝑆)
54ffvelrnda 6828 . . . . 5 ((𝜑𝑥 𝑅) → (𝐹𝑥) ∈ 𝑆)
6 mbfmco.3 . . . . . . 7 (𝜑𝑇 ran sigAlgebra)
7 mbfmco2.5 . . . . . . 7 (𝜑𝐺 ∈ (𝑅MblFnM𝑇))
81, 6, 7mbfmf 31623 . . . . . 6 (𝜑𝐺: 𝑅 𝑇)
98ffvelrnda 6828 . . . . 5 ((𝜑𝑥 𝑅) → (𝐺𝑥) ∈ 𝑇)
10 opelxpi 5556 . . . . 5 (((𝐹𝑥) ∈ 𝑆 ∧ (𝐺𝑥) ∈ 𝑇) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑆 × 𝑇))
115, 9, 10syl2anc 587 . . . 4 ((𝜑𝑥 𝑅) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑆 × 𝑇))
12 sxuni 31562 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
132, 6, 12syl2anc 587 . . . . 5 (𝜑 → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
1413adantr 484 . . . 4 ((𝜑𝑥 𝑅) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
1511, 14eleqtrd 2892 . . 3 ((𝜑𝑥 𝑅) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑆 ×s 𝑇))
16 mbfmco2.6 . . 3 𝐻 = (𝑥 𝑅 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
1715, 16fmptd 6855 . 2 (𝜑𝐻: 𝑅 (𝑆 ×s 𝑇))
18 eqid 2798 . . . . 5 (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) = (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))
19 vex 3444 . . . . . 6 𝑎 ∈ V
20 vex 3444 . . . . . 6 𝑏 ∈ V
2119, 20xpex 7456 . . . . 5 (𝑎 × 𝑏) ∈ V
2218, 21elrnmpo 7266 . . . 4 (𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) ↔ ∃𝑎𝑆𝑏𝑇 𝑐 = (𝑎 × 𝑏))
23 simp3 1135 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝑐 = (𝑎 × 𝑏))
2423imaeq2d 5896 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → (𝐻𝑐) = (𝐻 “ (𝑎 × 𝑏)))
25 simp1 1133 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝜑)
26 simp2l 1196 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝑎𝑆)
27 simp2r 1197 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → 𝑏𝑇)
284, 8, 16xppreima2 30413 . . . . . . . . . . 11 (𝜑 → (𝐻 “ (𝑎 × 𝑏)) = ((𝐹𝑎) ∩ (𝐺𝑏)))
29283ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑎𝑆𝑏𝑇) → (𝐻 “ (𝑎 × 𝑏)) = ((𝐹𝑎) ∩ (𝐺𝑏)))
3013ad2ant1 1130 . . . . . . . . . . 11 ((𝜑𝑎𝑆𝑏𝑇) → 𝑅 ran sigAlgebra)
3123ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑆 ran sigAlgebra)
3233ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝐹 ∈ (𝑅MblFnM𝑆))
33 simp2 1134 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑎𝑆)
3430, 31, 32, 33mbfmcnvima 31625 . . . . . . . . . . 11 ((𝜑𝑎𝑆𝑏𝑇) → (𝐹𝑎) ∈ 𝑅)
3563ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑇 ran sigAlgebra)
3673ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝐺 ∈ (𝑅MblFnM𝑇))
37 simp3 1135 . . . . . . . . . . . 12 ((𝜑𝑎𝑆𝑏𝑇) → 𝑏𝑇)
3830, 35, 36, 37mbfmcnvima 31625 . . . . . . . . . . 11 ((𝜑𝑎𝑆𝑏𝑇) → (𝐺𝑏) ∈ 𝑅)
39 inelsiga 31504 . . . . . . . . . . 11 ((𝑅 ran sigAlgebra ∧ (𝐹𝑎) ∈ 𝑅 ∧ (𝐺𝑏) ∈ 𝑅) → ((𝐹𝑎) ∩ (𝐺𝑏)) ∈ 𝑅)
4030, 34, 38, 39syl3anc 1368 . . . . . . . . . 10 ((𝜑𝑎𝑆𝑏𝑇) → ((𝐹𝑎) ∩ (𝐺𝑏)) ∈ 𝑅)
4129, 40eqeltrd 2890 . . . . . . . . 9 ((𝜑𝑎𝑆𝑏𝑇) → (𝐻 “ (𝑎 × 𝑏)) ∈ 𝑅)
4225, 26, 27, 41syl3anc 1368 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → (𝐻 “ (𝑎 × 𝑏)) ∈ 𝑅)
4324, 42eqeltrd 2890 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝑇) ∧ 𝑐 = (𝑎 × 𝑏)) → (𝐻𝑐) ∈ 𝑅)
44433expia 1118 . . . . . 6 ((𝜑 ∧ (𝑎𝑆𝑏𝑇)) → (𝑐 = (𝑎 × 𝑏) → (𝐻𝑐) ∈ 𝑅))
4544rexlimdvva 3253 . . . . 5 (𝜑 → (∃𝑎𝑆𝑏𝑇 𝑐 = (𝑎 × 𝑏) → (𝐻𝑐) ∈ 𝑅))
4645imp 410 . . . 4 ((𝜑 ∧ ∃𝑎𝑆𝑏𝑇 𝑐 = (𝑎 × 𝑏)) → (𝐻𝑐) ∈ 𝑅)
4722, 46sylan2b 596 . . 3 ((𝜑𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))) → (𝐻𝑐) ∈ 𝑅)
4847ralrimiva 3149 . 2 (𝜑 → ∀𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))(𝐻𝑐) ∈ 𝑅)
49 eqid 2798 . . . . 5 ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) = ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))
5049txbasex 22171 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) ∈ V)
512, 6, 50syl2anc 587 . . 3 (𝜑 → ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏)) ∈ V)
5249sxval 31559 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))))
532, 6, 52syl2anc 587 . . 3 (𝜑 → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))))
5451, 1, 53imambfm 31630 . 2 (𝜑 → (𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)) ↔ (𝐻: 𝑅 (𝑆 ×s 𝑇) ∧ ∀𝑐 ∈ ran (𝑎𝑆, 𝑏𝑇 ↦ (𝑎 × 𝑏))(𝐻𝑐) ∈ 𝑅)))
5517, 48, 54mpbir2and 712 1 (𝜑𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  cin 3880  cop 4531   cuni 4800  cmpt 5110   × cxp 5517  ccnv 5518  ran crn 5520  cima 5522  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  sigAlgebracsiga 31477  sigaGencsigagen 31507   ×s csx 31557  MblFnMcmbfm 31618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-ac2 9874
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-ac 9527  df-siga 31478  df-sigagen 31508  df-sx 31558  df-mbfm 31619
This theorem is referenced by:  rrvadd  31820
  Copyright terms: Public domain W3C validator