Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsx Structured version   Visualization version   GIF version

Theorem elsx 34207
Description: The cartesian product of two open sets is an element of the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.)
Assertion
Ref Expression
elsx (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → (𝐴 × 𝐵) ∈ (𝑆 ×s 𝑇))

Proof of Theorem elsx
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . 6 ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))
21txbasex 23481 . . . . 5 ((𝑆𝑉𝑇𝑊) → ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ∈ V)
3 sssigagen 34158 . . . . 5 (ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ∈ V → ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ⊆ (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
42, 3syl 17 . . . 4 ((𝑆𝑉𝑇𝑊) → ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ⊆ (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
54adantr 480 . . 3 (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ⊆ (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
6 eqid 2731 . . . . . 6 (𝐴 × 𝐵) = (𝐴 × 𝐵)
7 xpeq1 5628 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦))
87eqeq2d 2742 . . . . . . 7 (𝑥 = 𝐴 → ((𝐴 × 𝐵) = (𝑥 × 𝑦) ↔ (𝐴 × 𝐵) = (𝐴 × 𝑦)))
9 xpeq2 5635 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵))
109eqeq2d 2742 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 × 𝐵) = (𝐴 × 𝑦) ↔ (𝐴 × 𝐵) = (𝐴 × 𝐵)))
118, 10rspc2ev 3585 . . . . . 6 ((𝐴𝑆𝐵𝑇 ∧ (𝐴 × 𝐵) = (𝐴 × 𝐵)) → ∃𝑥𝑆𝑦𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦))
126, 11mp3an3 1452 . . . . 5 ((𝐴𝑆𝐵𝑇) → ∃𝑥𝑆𝑦𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦))
13 xpexg 7683 . . . . . 6 ((𝐴𝑆𝐵𝑇) → (𝐴 × 𝐵) ∈ V)
14 eqid 2731 . . . . . . 7 (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) = (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))
1514elrnmpog 7481 . . . . . 6 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵) ∈ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥𝑆𝑦𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦)))
1613, 15syl 17 . . . . 5 ((𝐴𝑆𝐵𝑇) → ((𝐴 × 𝐵) ∈ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥𝑆𝑦𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦)))
1712, 16mpbird 257 . . . 4 ((𝐴𝑆𝐵𝑇) → (𝐴 × 𝐵) ∈ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)))
1817adantl 481 . . 3 (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → (𝐴 × 𝐵) ∈ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)))
195, 18sseldd 3930 . 2 (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → (𝐴 × 𝐵) ∈ (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
201sxval 34203 . . 3 ((𝑆𝑉𝑇𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
2120adantr 480 . 2 (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
2219, 21eleqtrrd 2834 1 (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → (𝐴 × 𝐵) ∈ (𝑆 ×s 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  wss 3897   × cxp 5612  ran crn 5615  cfv 6481  (class class class)co 7346  cmpo 7348  sigaGencsigagen 34151   ×s csx 34201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-siga 34122  df-sigagen 34152  df-sx 34202
This theorem is referenced by:  1stmbfm  34273  2ndmbfm  34274
  Copyright terms: Public domain W3C validator