Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsx Structured version   Visualization version   GIF version

Theorem elsx 31563
 Description: The cartesian product of two open sets is an element of the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.)
Assertion
Ref Expression
elsx (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → (𝐴 × 𝐵) ∈ (𝑆 ×s 𝑇))

Proof of Theorem elsx
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . . . 6 ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))
21txbasex 22171 . . . . 5 ((𝑆𝑉𝑇𝑊) → ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ∈ V)
3 sssigagen 31514 . . . . 5 (ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ∈ V → ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ⊆ (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
42, 3syl 17 . . . 4 ((𝑆𝑉𝑇𝑊) → ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ⊆ (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
54adantr 484 . . 3 (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ⊆ (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
6 eqid 2798 . . . . . 6 (𝐴 × 𝐵) = (𝐴 × 𝐵)
7 xpeq1 5533 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦))
87eqeq2d 2809 . . . . . . 7 (𝑥 = 𝐴 → ((𝐴 × 𝐵) = (𝑥 × 𝑦) ↔ (𝐴 × 𝐵) = (𝐴 × 𝑦)))
9 xpeq2 5540 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵))
109eqeq2d 2809 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 × 𝐵) = (𝐴 × 𝑦) ↔ (𝐴 × 𝐵) = (𝐴 × 𝐵)))
118, 10rspc2ev 3583 . . . . . 6 ((𝐴𝑆𝐵𝑇 ∧ (𝐴 × 𝐵) = (𝐴 × 𝐵)) → ∃𝑥𝑆𝑦𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦))
126, 11mp3an3 1447 . . . . 5 ((𝐴𝑆𝐵𝑇) → ∃𝑥𝑆𝑦𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦))
13 xpexg 7453 . . . . . 6 ((𝐴𝑆𝐵𝑇) → (𝐴 × 𝐵) ∈ V)
14 eqid 2798 . . . . . . 7 (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) = (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))
1514elrnmpog 7265 . . . . . 6 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵) ∈ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥𝑆𝑦𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦)))
1613, 15syl 17 . . . . 5 ((𝐴𝑆𝐵𝑇) → ((𝐴 × 𝐵) ∈ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥𝑆𝑦𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦)))
1712, 16mpbird 260 . . . 4 ((𝐴𝑆𝐵𝑇) → (𝐴 × 𝐵) ∈ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)))
1817adantl 485 . . 3 (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → (𝐴 × 𝐵) ∈ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)))
195, 18sseldd 3916 . 2 (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → (𝐴 × 𝐵) ∈ (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
201sxval 31559 . . 3 ((𝑆𝑉𝑇𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
2120adantr 484 . 2 (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
2219, 21eleqtrrd 2893 1 (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → (𝐴 × 𝐵) ∈ (𝑆 ×s 𝑇))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∃wrex 3107  Vcvv 3441   ⊆ wss 3881   × cxp 5517  ran crn 5520  ‘cfv 6324  (class class class)co 7135   ∈ cmpo 7137  sigaGencsigagen 31507   ×s csx 31557 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-siga 31478  df-sigagen 31508  df-sx 31558 This theorem is referenced by:  1stmbfm  31628  2ndmbfm  31629
 Copyright terms: Public domain W3C validator