Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . 6
⊢ ran
(𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) |
2 | 1 | txbasex 22706 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ∈ V) |
3 | | sssigagen 32100 |
. . . . 5
⊢ (ran
(𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ∈ V → ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ⊆ (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
4 | 2, 3 | syl 17 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ⊆ (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
5 | 4 | adantr 481 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ⊆ (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
6 | | eqid 2738 |
. . . . . 6
⊢ (𝐴 × 𝐵) = (𝐴 × 𝐵) |
7 | | xpeq1 5600 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦)) |
8 | 7 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝐴 × 𝐵) = (𝑥 × 𝑦) ↔ (𝐴 × 𝐵) = (𝐴 × 𝑦))) |
9 | | xpeq2 5607 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵)) |
10 | 9 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → ((𝐴 × 𝐵) = (𝐴 × 𝑦) ↔ (𝐴 × 𝐵) = (𝐴 × 𝐵))) |
11 | 8, 10 | rspc2ev 3573 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ∧ (𝐴 × 𝐵) = (𝐴 × 𝐵)) → ∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦)) |
12 | 6, 11 | mp3an3 1449 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → ∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦)) |
13 | | xpexg 7592 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (𝐴 × 𝐵) ∈ V) |
14 | | eqid 2738 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) |
15 | 14 | elrnmpog 7401 |
. . . . . 6
⊢ ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵) ∈ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦))) |
16 | 13, 15 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → ((𝐴 × 𝐵) ∈ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦))) |
17 | 12, 16 | mpbird 256 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (𝐴 × 𝐵) ∈ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) |
18 | 17 | adantl 482 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐴 × 𝐵) ∈ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) |
19 | 5, 18 | sseldd 3923 |
. 2
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐴 × 𝐵) ∈ (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
20 | 1 | sxval 32145 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
21 | 20 | adantr 481 |
. 2
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
22 | 19, 21 | eleqtrrd 2842 |
1
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → (𝐴 × 𝐵) ∈ (𝑆 ×s 𝑇)) |