Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsx Structured version   Visualization version   GIF version

Theorem elsx 34225
Description: The cartesian product of two open sets is an element of the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.)
Assertion
Ref Expression
elsx (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → (𝐴 × 𝐵) ∈ (𝑆 ×s 𝑇))

Proof of Theorem elsx
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . 6 ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))
21txbasex 23504 . . . . 5 ((𝑆𝑉𝑇𝑊) → ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ∈ V)
3 sssigagen 34176 . . . . 5 (ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ∈ V → ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ⊆ (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
42, 3syl 17 . . . 4 ((𝑆𝑉𝑇𝑊) → ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ⊆ (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
54adantr 480 . . 3 (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ⊆ (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
6 eqid 2735 . . . . . 6 (𝐴 × 𝐵) = (𝐴 × 𝐵)
7 xpeq1 5668 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦))
87eqeq2d 2746 . . . . . . 7 (𝑥 = 𝐴 → ((𝐴 × 𝐵) = (𝑥 × 𝑦) ↔ (𝐴 × 𝐵) = (𝐴 × 𝑦)))
9 xpeq2 5675 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵))
109eqeq2d 2746 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 × 𝐵) = (𝐴 × 𝑦) ↔ (𝐴 × 𝐵) = (𝐴 × 𝐵)))
118, 10rspc2ev 3614 . . . . . 6 ((𝐴𝑆𝐵𝑇 ∧ (𝐴 × 𝐵) = (𝐴 × 𝐵)) → ∃𝑥𝑆𝑦𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦))
126, 11mp3an3 1452 . . . . 5 ((𝐴𝑆𝐵𝑇) → ∃𝑥𝑆𝑦𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦))
13 xpexg 7744 . . . . . 6 ((𝐴𝑆𝐵𝑇) → (𝐴 × 𝐵) ∈ V)
14 eqid 2735 . . . . . . 7 (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) = (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))
1514elrnmpog 7542 . . . . . 6 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵) ∈ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥𝑆𝑦𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦)))
1613, 15syl 17 . . . . 5 ((𝐴𝑆𝐵𝑇) → ((𝐴 × 𝐵) ∈ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ↔ ∃𝑥𝑆𝑦𝑇 (𝐴 × 𝐵) = (𝑥 × 𝑦)))
1712, 16mpbird 257 . . . 4 ((𝐴𝑆𝐵𝑇) → (𝐴 × 𝐵) ∈ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)))
1817adantl 481 . . 3 (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → (𝐴 × 𝐵) ∈ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)))
195, 18sseldd 3959 . 2 (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → (𝐴 × 𝐵) ∈ (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
201sxval 34221 . . 3 ((𝑆𝑉𝑇𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
2120adantr 480 . 2 (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
2219, 21eleqtrrd 2837 1 (((𝑆𝑉𝑇𝑊) ∧ (𝐴𝑆𝐵𝑇)) → (𝐴 × 𝐵) ∈ (𝑆 ×s 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  Vcvv 3459  wss 3926   × cxp 5652  ran crn 5655  cfv 6531  (class class class)co 7405  cmpo 7407  sigaGencsigagen 34169   ×s csx 34219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-siga 34140  df-sigagen 34170  df-sx 34220
This theorem is referenced by:  1stmbfm  34292  2ndmbfm  34293
  Copyright terms: Public domain W3C validator