![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sxsiga | Structured version Visualization version GIF version |
Description: A product sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 1-Jun-2017.) |
Ref | Expression |
---|---|
sxsiga | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ ∪ ran sigAlgebra) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . 4 ⊢ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) | |
2 | 1 | sxval 30851 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
3 | 1 | txbasex 21778 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ∈ V) |
4 | sigagensiga 30802 | . . . 4 ⊢ (ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) ∈ V → (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) ∈ (sigAlgebra‘∪ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) ∈ (sigAlgebra‘∪ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
6 | 2, 5 | eqeltrd 2859 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ (sigAlgebra‘∪ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
7 | elrnsiga 30787 | . 2 ⊢ ((𝑆 ×s 𝑇) ∈ (sigAlgebra‘∪ ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) → (𝑆 ×s 𝑇) ∈ ∪ ran sigAlgebra) | |
8 | 6, 7 | syl 17 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑇 ∈ ∪ ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ ∪ ran sigAlgebra) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2107 Vcvv 3398 ∪ cuni 4671 × cxp 5353 ran crn 5356 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 sigAlgebracsiga 30768 sigaGencsigagen 30799 ×s csx 30849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-siga 30769 df-sigagen 30800 df-sx 30850 |
This theorem is referenced by: sxsigon 30853 1stmbfm 30920 2ndmbfm 30921 rrvadd 31113 |
Copyright terms: Public domain | W3C validator |