Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxsiga Structured version   Visualization version   GIF version

Theorem sxsiga 34174
Description: A product sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 1-Jun-2017.)
Assertion
Ref Expression
sxsiga ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)

Proof of Theorem sxsiga
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))
21sxval 34173 . . 3 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
31txbasex 23451 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ∈ V)
4 sigagensiga 34124 . . . 4 (ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ∈ V → (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))) ∈ (sigAlgebra‘ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
53, 4syl 17 . . 3 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))) ∈ (sigAlgebra‘ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
62, 5eqeltrd 2828 . 2 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ (sigAlgebra‘ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
7 elrnsiga 34109 . 2 ((𝑆 ×s 𝑇) ∈ (sigAlgebra‘ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))) → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)
86, 7syl 17 1 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3436   cuni 4858   × cxp 5617  ran crn 5620  cfv 6482  (class class class)co 7349  cmpo 7351  sigAlgebracsiga 34091  sigaGencsigagen 34121   ×s csx 34171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-siga 34092  df-sigagen 34122  df-sx 34172
This theorem is referenced by:  sxsigon  34175  1stmbfm  34244  2ndmbfm  34245  rrvadd  34436
  Copyright terms: Public domain W3C validator