![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sxsiga | Structured version Visualization version GIF version |
Description: A product sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 1-Jun-2017.) |
Ref | Expression |
---|---|
sxsiga | β’ ((π β βͺ ran sigAlgebra β§ π β βͺ ran sigAlgebra) β (π Γs π) β βͺ ran sigAlgebra) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ ran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)) = ran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)) | |
2 | 1 | sxval 33183 | . . 3 β’ ((π β βͺ ran sigAlgebra β§ π β βͺ ran sigAlgebra) β (π Γs π) = (sigaGenβran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)))) |
3 | 1 | txbasex 23069 | . . . 4 β’ ((π β βͺ ran sigAlgebra β§ π β βͺ ran sigAlgebra) β ran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)) β V) |
4 | sigagensiga 33134 | . . . 4 β’ (ran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)) β V β (sigaGenβran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦))) β (sigAlgebraββͺ ran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)))) | |
5 | 3, 4 | syl 17 | . . 3 β’ ((π β βͺ ran sigAlgebra β§ π β βͺ ran sigAlgebra) β (sigaGenβran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦))) β (sigAlgebraββͺ ran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)))) |
6 | 2, 5 | eqeltrd 2833 | . 2 β’ ((π β βͺ ran sigAlgebra β§ π β βͺ ran sigAlgebra) β (π Γs π) β (sigAlgebraββͺ ran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)))) |
7 | elrnsiga 33119 | . 2 β’ ((π Γs π) β (sigAlgebraββͺ ran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦))) β (π Γs π) β βͺ ran sigAlgebra) | |
8 | 6, 7 | syl 17 | 1 β’ ((π β βͺ ran sigAlgebra β§ π β βͺ ran sigAlgebra) β (π Γs π) β βͺ ran sigAlgebra) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β wcel 2106 Vcvv 3474 βͺ cuni 4908 Γ cxp 5674 ran crn 5677 βcfv 6543 (class class class)co 7408 β cmpo 7410 sigAlgebracsiga 33101 sigaGencsigagen 33131 Γs csx 33181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-siga 33102 df-sigagen 33132 df-sx 33182 |
This theorem is referenced by: sxsigon 33185 1stmbfm 33254 2ndmbfm 33255 rrvadd 33446 |
Copyright terms: Public domain | W3C validator |