Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxsiga Structured version   Visualization version   GIF version

Theorem sxsiga 32455
Description: A product sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 1-Jun-2017.)
Assertion
Ref Expression
sxsiga ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)

Proof of Theorem sxsiga
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))
21sxval 32454 . . 3 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
31txbasex 22822 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ∈ V)
4 sigagensiga 32405 . . . 4 (ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)) ∈ V → (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))) ∈ (sigAlgebra‘ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
53, 4syl 17 . . 3 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))) ∈ (sigAlgebra‘ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
62, 5eqeltrd 2838 . 2 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ (sigAlgebra‘ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
7 elrnsiga 32390 . 2 ((𝑆 ×s 𝑇) ∈ (sigAlgebra‘ ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))) → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)
86, 7syl 17 1 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2106  Vcvv 3442   cuni 4856   × cxp 5622  ran crn 5625  cfv 6483  (class class class)co 7341  cmpo 7343  sigAlgebracsiga 32372  sigaGencsigagen 32402   ×s csx 32452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-fv 6491  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7903  df-2nd 7904  df-siga 32373  df-sigagen 32403  df-sx 32453
This theorem is referenced by:  sxsigon  32456  1stmbfm  32525  2ndmbfm  32526  rrvadd  32717
  Copyright terms: Public domain W3C validator