HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shmodsi Structured version   Visualization version   GIF version

Theorem shmodsi 29168
Description: The modular law holds for subspace sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
shmod.1 𝐴S
shmod.2 𝐵S
shmod.3 𝐶S
Assertion
Ref Expression
shmodsi (𝐴𝐶 → ((𝐴 + 𝐵) ∩ 𝐶) ⊆ (𝐴 + (𝐵𝐶)))

Proof of Theorem shmodsi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 4171 . . 3 (𝑧 ∈ ((𝐴 + 𝐵) ∩ 𝐶) ↔ (𝑧 ∈ (𝐴 + 𝐵) ∧ 𝑧𝐶))
2 shmod.1 . . . . . . 7 𝐴S
3 shmod.2 . . . . . . 7 𝐵S
42, 3shseli 29095 . . . . . 6 (𝑧 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥 + 𝑦))
5 shmod.3 . . . . . . . . . . . . . . 15 𝐶S
65sheli 28993 . . . . . . . . . . . . . 14 (𝑧𝐶𝑧 ∈ ℋ)
72sheli 28993 . . . . . . . . . . . . . 14 (𝑥𝐴𝑥 ∈ ℋ)
83sheli 28993 . . . . . . . . . . . . . 14 (𝑦𝐵𝑦 ∈ ℋ)
9 hvsubadd 28856 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑧 𝑥) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑧))
106, 7, 8, 9syl3an 1156 . . . . . . . . . . . . 13 ((𝑧𝐶𝑥𝐴𝑦𝐵) → ((𝑧 𝑥) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑧))
11 eqcom 2830 . . . . . . . . . . . . 13 ((𝑥 + 𝑦) = 𝑧𝑧 = (𝑥 + 𝑦))
1210, 11syl6bb 289 . . . . . . . . . . . 12 ((𝑧𝐶𝑥𝐴𝑦𝐵) → ((𝑧 𝑥) = 𝑦𝑧 = (𝑥 + 𝑦)))
13123expb 1116 . . . . . . . . . . 11 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → ((𝑧 𝑥) = 𝑦𝑧 = (𝑥 + 𝑦)))
145, 2shsvsi 29146 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝐶𝑥𝐴) → (𝑧 𝑥) ∈ (𝐶 + 𝐴))
155, 2shscomi 29142 . . . . . . . . . . . . . . . . . . . 20 (𝐶 + 𝐴) = (𝐴 + 𝐶)
1614, 15eleqtrdi 2925 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐶𝑥𝐴) → (𝑧 𝑥) ∈ (𝐴 + 𝐶))
172, 5shlesb1i 29165 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐶 ↔ (𝐴 + 𝐶) = 𝐶)
1817biimpi 218 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐶 → (𝐴 + 𝐶) = 𝐶)
1918eleq2d 2900 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐶 → ((𝑧 𝑥) ∈ (𝐴 + 𝐶) ↔ (𝑧 𝑥) ∈ 𝐶))
2016, 19syl5ib 246 . . . . . . . . . . . . . . . . . 18 (𝐴𝐶 → ((𝑧𝐶𝑥𝐴) → (𝑧 𝑥) ∈ 𝐶))
21 eleq1 2902 . . . . . . . . . . . . . . . . . . 19 ((𝑧 𝑥) = 𝑦 → ((𝑧 𝑥) ∈ 𝐶𝑦𝐶))
2221biimpd 231 . . . . . . . . . . . . . . . . . 18 ((𝑧 𝑥) = 𝑦 → ((𝑧 𝑥) ∈ 𝐶𝑦𝐶))
2320, 22sylan9 510 . . . . . . . . . . . . . . . . 17 ((𝐴𝐶 ∧ (𝑧 𝑥) = 𝑦) → ((𝑧𝐶𝑥𝐴) → 𝑦𝐶))
2423anim2d 613 . . . . . . . . . . . . . . . 16 ((𝐴𝐶 ∧ (𝑧 𝑥) = 𝑦) → ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → (𝑦𝐵𝑦𝐶)))
25 elin 4171 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
2624, 25syl6ibr 254 . . . . . . . . . . . . . . 15 ((𝐴𝐶 ∧ (𝑧 𝑥) = 𝑦) → ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → 𝑦 ∈ (𝐵𝐶)))
2726ex 415 . . . . . . . . . . . . . 14 (𝐴𝐶 → ((𝑧 𝑥) = 𝑦 → ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → 𝑦 ∈ (𝐵𝐶))))
2827com13 88 . . . . . . . . . . . . 13 ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → ((𝑧 𝑥) = 𝑦 → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
2928ancoms 461 . . . . . . . . . . . 12 (((𝑧𝐶𝑥𝐴) ∧ 𝑦𝐵) → ((𝑧 𝑥) = 𝑦 → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
3029anasss 469 . . . . . . . . . . 11 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → ((𝑧 𝑥) = 𝑦 → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
3113, 30sylbird 262 . . . . . . . . . 10 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → (𝑧 = (𝑥 + 𝑦) → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
3231imp 409 . . . . . . . . 9 (((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝐴𝐶𝑦 ∈ (𝐵𝐶)))
333, 5shincli 29141 . . . . . . . . . . . . . . 15 (𝐵𝐶) ∈ S
342, 33shsvai 29143 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) → (𝑥 + 𝑦) ∈ (𝐴 + (𝐵𝐶)))
35 eleq1 2902 . . . . . . . . . . . . . 14 (𝑧 = (𝑥 + 𝑦) → (𝑧 ∈ (𝐴 + (𝐵𝐶)) ↔ (𝑥 + 𝑦) ∈ (𝐴 + (𝐵𝐶))))
3634, 35syl5ibr 248 . . . . . . . . . . . . 13 (𝑧 = (𝑥 + 𝑦) → ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
3736expd 418 . . . . . . . . . . . 12 (𝑧 = (𝑥 + 𝑦) → (𝑥𝐴 → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶)))))
3837com12 32 . . . . . . . . . . 11 (𝑥𝐴 → (𝑧 = (𝑥 + 𝑦) → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶)))))
3938ad2antrl 726 . . . . . . . . . 10 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → (𝑧 = (𝑥 + 𝑦) → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶)))))
4039imp 409 . . . . . . . . 9 (((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
4132, 40syld 47 . . . . . . . 8 (((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶))))
4241exp31 422 . . . . . . 7 (𝑧𝐶 → ((𝑥𝐴𝑦𝐵) → (𝑧 = (𝑥 + 𝑦) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶))))))
4342rexlimdvv 3295 . . . . . 6 (𝑧𝐶 → (∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥 + 𝑦) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶)))))
444, 43syl5bi 244 . . . . 5 (𝑧𝐶 → (𝑧 ∈ (𝐴 + 𝐵) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶)))))
4544com13 88 . . . 4 (𝐴𝐶 → (𝑧 ∈ (𝐴 + 𝐵) → (𝑧𝐶𝑧 ∈ (𝐴 + (𝐵𝐶)))))
4645impd 413 . . 3 (𝐴𝐶 → ((𝑧 ∈ (𝐴 + 𝐵) ∧ 𝑧𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
471, 46syl5bi 244 . 2 (𝐴𝐶 → (𝑧 ∈ ((𝐴 + 𝐵) ∩ 𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
4847ssrdv 3975 1 (𝐴𝐶 → ((𝐴 + 𝐵) ∩ 𝐶) ⊆ (𝐴 + (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141  cin 3937  wss 3938  (class class class)co 7158  chba 28698   + cva 28699   cmv 28704   S csh 28707   + cph 28710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-hilex 28778  ax-hfvadd 28779  ax-hvcom 28780  ax-hvass 28781  ax-hv0cl 28782  ax-hvaddid 28783  ax-hfvmul 28784  ax-hvmulid 28785  ax-hvdistr1 28787  ax-hvdistr2 28788  ax-hvmul0 28789
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-ltxr 10682  df-sub 10874  df-neg 10875  df-nn 11641  df-grpo 28272  df-ablo 28324  df-hvsub 28750  df-hlim 28751  df-sh 28986  df-ch 29000  df-shs 29087
This theorem is referenced by:  shmodi  29169
  Copyright terms: Public domain W3C validator