HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shmodsi Structured version   Visualization version   GIF version

Theorem shmodsi 31364
Description: The modular law holds for subspace sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
shmod.1 𝐴S
shmod.2 𝐵S
shmod.3 𝐶S
Assertion
Ref Expression
shmodsi (𝐴𝐶 → ((𝐴 + 𝐵) ∩ 𝐶) ⊆ (𝐴 + (𝐵𝐶)))

Proof of Theorem shmodsi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3918 . . 3 (𝑧 ∈ ((𝐴 + 𝐵) ∩ 𝐶) ↔ (𝑧 ∈ (𝐴 + 𝐵) ∧ 𝑧𝐶))
2 shmod.1 . . . . . . 7 𝐴S
3 shmod.2 . . . . . . 7 𝐵S
42, 3shseli 31291 . . . . . 6 (𝑧 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥 + 𝑦))
5 shmod.3 . . . . . . . . . . . . . . 15 𝐶S
65sheli 31189 . . . . . . . . . . . . . 14 (𝑧𝐶𝑧 ∈ ℋ)
72sheli 31189 . . . . . . . . . . . . . 14 (𝑥𝐴𝑥 ∈ ℋ)
83sheli 31189 . . . . . . . . . . . . . 14 (𝑦𝐵𝑦 ∈ ℋ)
9 hvsubadd 31052 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑧 𝑥) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑧))
106, 7, 8, 9syl3an 1160 . . . . . . . . . . . . 13 ((𝑧𝐶𝑥𝐴𝑦𝐵) → ((𝑧 𝑥) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑧))
11 eqcom 2738 . . . . . . . . . . . . 13 ((𝑥 + 𝑦) = 𝑧𝑧 = (𝑥 + 𝑦))
1210, 11bitrdi 287 . . . . . . . . . . . 12 ((𝑧𝐶𝑥𝐴𝑦𝐵) → ((𝑧 𝑥) = 𝑦𝑧 = (𝑥 + 𝑦)))
13123expb 1120 . . . . . . . . . . 11 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → ((𝑧 𝑥) = 𝑦𝑧 = (𝑥 + 𝑦)))
145, 2shsvsi 31342 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝐶𝑥𝐴) → (𝑧 𝑥) ∈ (𝐶 + 𝐴))
155, 2shscomi 31338 . . . . . . . . . . . . . . . . . . . 20 (𝐶 + 𝐴) = (𝐴 + 𝐶)
1614, 15eleqtrdi 2841 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐶𝑥𝐴) → (𝑧 𝑥) ∈ (𝐴 + 𝐶))
172, 5shlesb1i 31361 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐶 ↔ (𝐴 + 𝐶) = 𝐶)
1817biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐶 → (𝐴 + 𝐶) = 𝐶)
1918eleq2d 2817 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐶 → ((𝑧 𝑥) ∈ (𝐴 + 𝐶) ↔ (𝑧 𝑥) ∈ 𝐶))
2016, 19imbitrid 244 . . . . . . . . . . . . . . . . . 18 (𝐴𝐶 → ((𝑧𝐶𝑥𝐴) → (𝑧 𝑥) ∈ 𝐶))
21 eleq1 2819 . . . . . . . . . . . . . . . . . . 19 ((𝑧 𝑥) = 𝑦 → ((𝑧 𝑥) ∈ 𝐶𝑦𝐶))
2221biimpd 229 . . . . . . . . . . . . . . . . . 18 ((𝑧 𝑥) = 𝑦 → ((𝑧 𝑥) ∈ 𝐶𝑦𝐶))
2320, 22sylan9 507 . . . . . . . . . . . . . . . . 17 ((𝐴𝐶 ∧ (𝑧 𝑥) = 𝑦) → ((𝑧𝐶𝑥𝐴) → 𝑦𝐶))
2423anim2d 612 . . . . . . . . . . . . . . . 16 ((𝐴𝐶 ∧ (𝑧 𝑥) = 𝑦) → ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → (𝑦𝐵𝑦𝐶)))
25 elin 3918 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
2624, 25imbitrrdi 252 . . . . . . . . . . . . . . 15 ((𝐴𝐶 ∧ (𝑧 𝑥) = 𝑦) → ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → 𝑦 ∈ (𝐵𝐶)))
2726ex 412 . . . . . . . . . . . . . 14 (𝐴𝐶 → ((𝑧 𝑥) = 𝑦 → ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → 𝑦 ∈ (𝐵𝐶))))
2827com13 88 . . . . . . . . . . . . 13 ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → ((𝑧 𝑥) = 𝑦 → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
2928ancoms 458 . . . . . . . . . . . 12 (((𝑧𝐶𝑥𝐴) ∧ 𝑦𝐵) → ((𝑧 𝑥) = 𝑦 → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
3029anasss 466 . . . . . . . . . . 11 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → ((𝑧 𝑥) = 𝑦 → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
3113, 30sylbird 260 . . . . . . . . . 10 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → (𝑧 = (𝑥 + 𝑦) → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
3231imp 406 . . . . . . . . 9 (((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝐴𝐶𝑦 ∈ (𝐵𝐶)))
333, 5shincli 31337 . . . . . . . . . . . . . . 15 (𝐵𝐶) ∈ S
342, 33shsvai 31339 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) → (𝑥 + 𝑦) ∈ (𝐴 + (𝐵𝐶)))
35 eleq1 2819 . . . . . . . . . . . . . 14 (𝑧 = (𝑥 + 𝑦) → (𝑧 ∈ (𝐴 + (𝐵𝐶)) ↔ (𝑥 + 𝑦) ∈ (𝐴 + (𝐵𝐶))))
3634, 35imbitrrid 246 . . . . . . . . . . . . 13 (𝑧 = (𝑥 + 𝑦) → ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
3736expd 415 . . . . . . . . . . . 12 (𝑧 = (𝑥 + 𝑦) → (𝑥𝐴 → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶)))))
3837com12 32 . . . . . . . . . . 11 (𝑥𝐴 → (𝑧 = (𝑥 + 𝑦) → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶)))))
3938ad2antrl 728 . . . . . . . . . 10 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → (𝑧 = (𝑥 + 𝑦) → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶)))))
4039imp 406 . . . . . . . . 9 (((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
4132, 40syld 47 . . . . . . . 8 (((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶))))
4241exp31 419 . . . . . . 7 (𝑧𝐶 → ((𝑥𝐴𝑦𝐵) → (𝑧 = (𝑥 + 𝑦) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶))))))
4342rexlimdvv 3188 . . . . . 6 (𝑧𝐶 → (∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥 + 𝑦) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶)))))
444, 43biimtrid 242 . . . . 5 (𝑧𝐶 → (𝑧 ∈ (𝐴 + 𝐵) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶)))))
4544com13 88 . . . 4 (𝐴𝐶 → (𝑧 ∈ (𝐴 + 𝐵) → (𝑧𝐶𝑧 ∈ (𝐴 + (𝐵𝐶)))))
4645impd 410 . . 3 (𝐴𝐶 → ((𝑧 ∈ (𝐴 + 𝐵) ∧ 𝑧𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
471, 46biimtrid 242 . 2 (𝐴𝐶 → (𝑧 ∈ ((𝐴 + 𝐵) ∩ 𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
4847ssrdv 3940 1 (𝐴𝐶 → ((𝐴 + 𝐵) ∩ 𝐶) ⊆ (𝐴 + (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  cin 3901  wss 3902  (class class class)co 7346  chba 30894   + cva 30895   cmv 30900   S csh 30903   + cph 30906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-hilex 30974  ax-hfvadd 30975  ax-hvcom 30976  ax-hvass 30977  ax-hv0cl 30978  ax-hvaddid 30979  ax-hfvmul 30980  ax-hvmulid 30981  ax-hvdistr1 30983  ax-hvdistr2 30984  ax-hvmul0 30985
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-ltxr 11148  df-sub 11343  df-neg 11344  df-nn 12123  df-grpo 30468  df-ablo 30520  df-hvsub 30946  df-hlim 30947  df-sh 31182  df-ch 31196  df-shs 31283
This theorem is referenced by:  shmodi  31365
  Copyright terms: Public domain W3C validator