HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shmodsi Structured version   Visualization version   GIF version

Theorem shmodsi 31408
Description: The modular law holds for subspace sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
shmod.1 𝐴S
shmod.2 𝐵S
shmod.3 𝐶S
Assertion
Ref Expression
shmodsi (𝐴𝐶 → ((𝐴 + 𝐵) ∩ 𝐶) ⊆ (𝐴 + (𝐵𝐶)))

Proof of Theorem shmodsi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3967 . . 3 (𝑧 ∈ ((𝐴 + 𝐵) ∩ 𝐶) ↔ (𝑧 ∈ (𝐴 + 𝐵) ∧ 𝑧𝐶))
2 shmod.1 . . . . . . 7 𝐴S
3 shmod.2 . . . . . . 7 𝐵S
42, 3shseli 31335 . . . . . 6 (𝑧 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥 + 𝑦))
5 shmod.3 . . . . . . . . . . . . . . 15 𝐶S
65sheli 31233 . . . . . . . . . . . . . 14 (𝑧𝐶𝑧 ∈ ℋ)
72sheli 31233 . . . . . . . . . . . . . 14 (𝑥𝐴𝑥 ∈ ℋ)
83sheli 31233 . . . . . . . . . . . . . 14 (𝑦𝐵𝑦 ∈ ℋ)
9 hvsubadd 31096 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑧 𝑥) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑧))
106, 7, 8, 9syl3an 1161 . . . . . . . . . . . . 13 ((𝑧𝐶𝑥𝐴𝑦𝐵) → ((𝑧 𝑥) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑧))
11 eqcom 2744 . . . . . . . . . . . . 13 ((𝑥 + 𝑦) = 𝑧𝑧 = (𝑥 + 𝑦))
1210, 11bitrdi 287 . . . . . . . . . . . 12 ((𝑧𝐶𝑥𝐴𝑦𝐵) → ((𝑧 𝑥) = 𝑦𝑧 = (𝑥 + 𝑦)))
13123expb 1121 . . . . . . . . . . 11 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → ((𝑧 𝑥) = 𝑦𝑧 = (𝑥 + 𝑦)))
145, 2shsvsi 31386 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝐶𝑥𝐴) → (𝑧 𝑥) ∈ (𝐶 + 𝐴))
155, 2shscomi 31382 . . . . . . . . . . . . . . . . . . . 20 (𝐶 + 𝐴) = (𝐴 + 𝐶)
1614, 15eleqtrdi 2851 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐶𝑥𝐴) → (𝑧 𝑥) ∈ (𝐴 + 𝐶))
172, 5shlesb1i 31405 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐶 ↔ (𝐴 + 𝐶) = 𝐶)
1817biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐶 → (𝐴 + 𝐶) = 𝐶)
1918eleq2d 2827 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐶 → ((𝑧 𝑥) ∈ (𝐴 + 𝐶) ↔ (𝑧 𝑥) ∈ 𝐶))
2016, 19imbitrid 244 . . . . . . . . . . . . . . . . . 18 (𝐴𝐶 → ((𝑧𝐶𝑥𝐴) → (𝑧 𝑥) ∈ 𝐶))
21 eleq1 2829 . . . . . . . . . . . . . . . . . . 19 ((𝑧 𝑥) = 𝑦 → ((𝑧 𝑥) ∈ 𝐶𝑦𝐶))
2221biimpd 229 . . . . . . . . . . . . . . . . . 18 ((𝑧 𝑥) = 𝑦 → ((𝑧 𝑥) ∈ 𝐶𝑦𝐶))
2320, 22sylan9 507 . . . . . . . . . . . . . . . . 17 ((𝐴𝐶 ∧ (𝑧 𝑥) = 𝑦) → ((𝑧𝐶𝑥𝐴) → 𝑦𝐶))
2423anim2d 612 . . . . . . . . . . . . . . . 16 ((𝐴𝐶 ∧ (𝑧 𝑥) = 𝑦) → ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → (𝑦𝐵𝑦𝐶)))
25 elin 3967 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
2624, 25imbitrrdi 252 . . . . . . . . . . . . . . 15 ((𝐴𝐶 ∧ (𝑧 𝑥) = 𝑦) → ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → 𝑦 ∈ (𝐵𝐶)))
2726ex 412 . . . . . . . . . . . . . 14 (𝐴𝐶 → ((𝑧 𝑥) = 𝑦 → ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → 𝑦 ∈ (𝐵𝐶))))
2827com13 88 . . . . . . . . . . . . 13 ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → ((𝑧 𝑥) = 𝑦 → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
2928ancoms 458 . . . . . . . . . . . 12 (((𝑧𝐶𝑥𝐴) ∧ 𝑦𝐵) → ((𝑧 𝑥) = 𝑦 → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
3029anasss 466 . . . . . . . . . . 11 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → ((𝑧 𝑥) = 𝑦 → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
3113, 30sylbird 260 . . . . . . . . . 10 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → (𝑧 = (𝑥 + 𝑦) → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
3231imp 406 . . . . . . . . 9 (((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝐴𝐶𝑦 ∈ (𝐵𝐶)))
333, 5shincli 31381 . . . . . . . . . . . . . . 15 (𝐵𝐶) ∈ S
342, 33shsvai 31383 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) → (𝑥 + 𝑦) ∈ (𝐴 + (𝐵𝐶)))
35 eleq1 2829 . . . . . . . . . . . . . 14 (𝑧 = (𝑥 + 𝑦) → (𝑧 ∈ (𝐴 + (𝐵𝐶)) ↔ (𝑥 + 𝑦) ∈ (𝐴 + (𝐵𝐶))))
3634, 35imbitrrid 246 . . . . . . . . . . . . 13 (𝑧 = (𝑥 + 𝑦) → ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
3736expd 415 . . . . . . . . . . . 12 (𝑧 = (𝑥 + 𝑦) → (𝑥𝐴 → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶)))))
3837com12 32 . . . . . . . . . . 11 (𝑥𝐴 → (𝑧 = (𝑥 + 𝑦) → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶)))))
3938ad2antrl 728 . . . . . . . . . 10 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → (𝑧 = (𝑥 + 𝑦) → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶)))))
4039imp 406 . . . . . . . . 9 (((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
4132, 40syld 47 . . . . . . . 8 (((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶))))
4241exp31 419 . . . . . . 7 (𝑧𝐶 → ((𝑥𝐴𝑦𝐵) → (𝑧 = (𝑥 + 𝑦) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶))))))
4342rexlimdvv 3212 . . . . . 6 (𝑧𝐶 → (∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥 + 𝑦) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶)))))
444, 43biimtrid 242 . . . . 5 (𝑧𝐶 → (𝑧 ∈ (𝐴 + 𝐵) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶)))))
4544com13 88 . . . 4 (𝐴𝐶 → (𝑧 ∈ (𝐴 + 𝐵) → (𝑧𝐶𝑧 ∈ (𝐴 + (𝐵𝐶)))))
4645impd 410 . . 3 (𝐴𝐶 → ((𝑧 ∈ (𝐴 + 𝐵) ∧ 𝑧𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
471, 46biimtrid 242 . 2 (𝐴𝐶 → (𝑧 ∈ ((𝐴 + 𝐵) ∩ 𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
4847ssrdv 3989 1 (𝐴𝐶 → ((𝐴 + 𝐵) ∩ 𝐶) ⊆ (𝐴 + (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  cin 3950  wss 3951  (class class class)co 7431  chba 30938   + cva 30939   cmv 30944   S csh 30947   + cph 30950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-neg 11495  df-nn 12267  df-grpo 30512  df-ablo 30564  df-hvsub 30990  df-hlim 30991  df-sh 31226  df-ch 31240  df-shs 31327
This theorem is referenced by:  shmodi  31409
  Copyright terms: Public domain W3C validator