HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shmodsi Structured version   Visualization version   GIF version

Theorem shmodsi 29751
Description: The modular law holds for subspace sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
shmod.1 𝐴S
shmod.2 𝐵S
shmod.3 𝐶S
Assertion
Ref Expression
shmodsi (𝐴𝐶 → ((𝐴 + 𝐵) ∩ 𝐶) ⊆ (𝐴 + (𝐵𝐶)))

Proof of Theorem shmodsi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3903 . . 3 (𝑧 ∈ ((𝐴 + 𝐵) ∩ 𝐶) ↔ (𝑧 ∈ (𝐴 + 𝐵) ∧ 𝑧𝐶))
2 shmod.1 . . . . . . 7 𝐴S
3 shmod.2 . . . . . . 7 𝐵S
42, 3shseli 29678 . . . . . 6 (𝑧 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥 + 𝑦))
5 shmod.3 . . . . . . . . . . . . . . 15 𝐶S
65sheli 29576 . . . . . . . . . . . . . 14 (𝑧𝐶𝑧 ∈ ℋ)
72sheli 29576 . . . . . . . . . . . . . 14 (𝑥𝐴𝑥 ∈ ℋ)
83sheli 29576 . . . . . . . . . . . . . 14 (𝑦𝐵𝑦 ∈ ℋ)
9 hvsubadd 29439 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑧 𝑥) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑧))
106, 7, 8, 9syl3an 1159 . . . . . . . . . . . . 13 ((𝑧𝐶𝑥𝐴𝑦𝐵) → ((𝑧 𝑥) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑧))
11 eqcom 2745 . . . . . . . . . . . . 13 ((𝑥 + 𝑦) = 𝑧𝑧 = (𝑥 + 𝑦))
1210, 11bitrdi 287 . . . . . . . . . . . 12 ((𝑧𝐶𝑥𝐴𝑦𝐵) → ((𝑧 𝑥) = 𝑦𝑧 = (𝑥 + 𝑦)))
13123expb 1119 . . . . . . . . . . 11 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → ((𝑧 𝑥) = 𝑦𝑧 = (𝑥 + 𝑦)))
145, 2shsvsi 29729 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝐶𝑥𝐴) → (𝑧 𝑥) ∈ (𝐶 + 𝐴))
155, 2shscomi 29725 . . . . . . . . . . . . . . . . . . . 20 (𝐶 + 𝐴) = (𝐴 + 𝐶)
1614, 15eleqtrdi 2849 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐶𝑥𝐴) → (𝑧 𝑥) ∈ (𝐴 + 𝐶))
172, 5shlesb1i 29748 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐶 ↔ (𝐴 + 𝐶) = 𝐶)
1817biimpi 215 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐶 → (𝐴 + 𝐶) = 𝐶)
1918eleq2d 2824 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐶 → ((𝑧 𝑥) ∈ (𝐴 + 𝐶) ↔ (𝑧 𝑥) ∈ 𝐶))
2016, 19syl5ib 243 . . . . . . . . . . . . . . . . . 18 (𝐴𝐶 → ((𝑧𝐶𝑥𝐴) → (𝑧 𝑥) ∈ 𝐶))
21 eleq1 2826 . . . . . . . . . . . . . . . . . . 19 ((𝑧 𝑥) = 𝑦 → ((𝑧 𝑥) ∈ 𝐶𝑦𝐶))
2221biimpd 228 . . . . . . . . . . . . . . . . . 18 ((𝑧 𝑥) = 𝑦 → ((𝑧 𝑥) ∈ 𝐶𝑦𝐶))
2320, 22sylan9 508 . . . . . . . . . . . . . . . . 17 ((𝐴𝐶 ∧ (𝑧 𝑥) = 𝑦) → ((𝑧𝐶𝑥𝐴) → 𝑦𝐶))
2423anim2d 612 . . . . . . . . . . . . . . . 16 ((𝐴𝐶 ∧ (𝑧 𝑥) = 𝑦) → ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → (𝑦𝐵𝑦𝐶)))
25 elin 3903 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
2624, 25syl6ibr 251 . . . . . . . . . . . . . . 15 ((𝐴𝐶 ∧ (𝑧 𝑥) = 𝑦) → ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → 𝑦 ∈ (𝐵𝐶)))
2726ex 413 . . . . . . . . . . . . . 14 (𝐴𝐶 → ((𝑧 𝑥) = 𝑦 → ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → 𝑦 ∈ (𝐵𝐶))))
2827com13 88 . . . . . . . . . . . . 13 ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → ((𝑧 𝑥) = 𝑦 → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
2928ancoms 459 . . . . . . . . . . . 12 (((𝑧𝐶𝑥𝐴) ∧ 𝑦𝐵) → ((𝑧 𝑥) = 𝑦 → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
3029anasss 467 . . . . . . . . . . 11 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → ((𝑧 𝑥) = 𝑦 → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
3113, 30sylbird 259 . . . . . . . . . 10 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → (𝑧 = (𝑥 + 𝑦) → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
3231imp 407 . . . . . . . . 9 (((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝐴𝐶𝑦 ∈ (𝐵𝐶)))
333, 5shincli 29724 . . . . . . . . . . . . . . 15 (𝐵𝐶) ∈ S
342, 33shsvai 29726 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) → (𝑥 + 𝑦) ∈ (𝐴 + (𝐵𝐶)))
35 eleq1 2826 . . . . . . . . . . . . . 14 (𝑧 = (𝑥 + 𝑦) → (𝑧 ∈ (𝐴 + (𝐵𝐶)) ↔ (𝑥 + 𝑦) ∈ (𝐴 + (𝐵𝐶))))
3634, 35syl5ibr 245 . . . . . . . . . . . . 13 (𝑧 = (𝑥 + 𝑦) → ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
3736expd 416 . . . . . . . . . . . 12 (𝑧 = (𝑥 + 𝑦) → (𝑥𝐴 → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶)))))
3837com12 32 . . . . . . . . . . 11 (𝑥𝐴 → (𝑧 = (𝑥 + 𝑦) → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶)))))
3938ad2antrl 725 . . . . . . . . . 10 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → (𝑧 = (𝑥 + 𝑦) → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶)))))
4039imp 407 . . . . . . . . 9 (((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
4132, 40syld 47 . . . . . . . 8 (((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶))))
4241exp31 420 . . . . . . 7 (𝑧𝐶 → ((𝑥𝐴𝑦𝐵) → (𝑧 = (𝑥 + 𝑦) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶))))))
4342rexlimdvv 3222 . . . . . 6 (𝑧𝐶 → (∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥 + 𝑦) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶)))))
444, 43syl5bi 241 . . . . 5 (𝑧𝐶 → (𝑧 ∈ (𝐴 + 𝐵) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶)))))
4544com13 88 . . . 4 (𝐴𝐶 → (𝑧 ∈ (𝐴 + 𝐵) → (𝑧𝐶𝑧 ∈ (𝐴 + (𝐵𝐶)))))
4645impd 411 . . 3 (𝐴𝐶 → ((𝑧 ∈ (𝐴 + 𝐵) ∧ 𝑧𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
471, 46syl5bi 241 . 2 (𝐴𝐶 → (𝑧 ∈ ((𝐴 + 𝐵) ∩ 𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
4847ssrdv 3927 1 (𝐴𝐶 → ((𝐴 + 𝐵) ∩ 𝐶) ⊆ (𝐴 + (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  cin 3886  wss 3887  (class class class)co 7275  chba 29281   + cva 29282   cmv 29287   S csh 29290   + cph 29293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-neg 11208  df-nn 11974  df-grpo 28855  df-ablo 28907  df-hvsub 29333  df-hlim 29334  df-sh 29569  df-ch 29583  df-shs 29670
This theorem is referenced by:  shmodi  29752
  Copyright terms: Public domain W3C validator