HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shmodsi Structured version   Visualization version   GIF version

Theorem shmodsi 31325
Description: The modular law holds for subspace sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
shmod.1 𝐴S
shmod.2 𝐵S
shmod.3 𝐶S
Assertion
Ref Expression
shmodsi (𝐴𝐶 → ((𝐴 + 𝐵) ∩ 𝐶) ⊆ (𝐴 + (𝐵𝐶)))

Proof of Theorem shmodsi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3933 . . 3 (𝑧 ∈ ((𝐴 + 𝐵) ∩ 𝐶) ↔ (𝑧 ∈ (𝐴 + 𝐵) ∧ 𝑧𝐶))
2 shmod.1 . . . . . . 7 𝐴S
3 shmod.2 . . . . . . 7 𝐵S
42, 3shseli 31252 . . . . . 6 (𝑧 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥 + 𝑦))
5 shmod.3 . . . . . . . . . . . . . . 15 𝐶S
65sheli 31150 . . . . . . . . . . . . . 14 (𝑧𝐶𝑧 ∈ ℋ)
72sheli 31150 . . . . . . . . . . . . . 14 (𝑥𝐴𝑥 ∈ ℋ)
83sheli 31150 . . . . . . . . . . . . . 14 (𝑦𝐵𝑦 ∈ ℋ)
9 hvsubadd 31013 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑧 𝑥) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑧))
106, 7, 8, 9syl3an 1160 . . . . . . . . . . . . 13 ((𝑧𝐶𝑥𝐴𝑦𝐵) → ((𝑧 𝑥) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑧))
11 eqcom 2737 . . . . . . . . . . . . 13 ((𝑥 + 𝑦) = 𝑧𝑧 = (𝑥 + 𝑦))
1210, 11bitrdi 287 . . . . . . . . . . . 12 ((𝑧𝐶𝑥𝐴𝑦𝐵) → ((𝑧 𝑥) = 𝑦𝑧 = (𝑥 + 𝑦)))
13123expb 1120 . . . . . . . . . . 11 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → ((𝑧 𝑥) = 𝑦𝑧 = (𝑥 + 𝑦)))
145, 2shsvsi 31303 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝐶𝑥𝐴) → (𝑧 𝑥) ∈ (𝐶 + 𝐴))
155, 2shscomi 31299 . . . . . . . . . . . . . . . . . . . 20 (𝐶 + 𝐴) = (𝐴 + 𝐶)
1614, 15eleqtrdi 2839 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐶𝑥𝐴) → (𝑧 𝑥) ∈ (𝐴 + 𝐶))
172, 5shlesb1i 31322 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐶 ↔ (𝐴 + 𝐶) = 𝐶)
1817biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐶 → (𝐴 + 𝐶) = 𝐶)
1918eleq2d 2815 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐶 → ((𝑧 𝑥) ∈ (𝐴 + 𝐶) ↔ (𝑧 𝑥) ∈ 𝐶))
2016, 19imbitrid 244 . . . . . . . . . . . . . . . . . 18 (𝐴𝐶 → ((𝑧𝐶𝑥𝐴) → (𝑧 𝑥) ∈ 𝐶))
21 eleq1 2817 . . . . . . . . . . . . . . . . . . 19 ((𝑧 𝑥) = 𝑦 → ((𝑧 𝑥) ∈ 𝐶𝑦𝐶))
2221biimpd 229 . . . . . . . . . . . . . . . . . 18 ((𝑧 𝑥) = 𝑦 → ((𝑧 𝑥) ∈ 𝐶𝑦𝐶))
2320, 22sylan9 507 . . . . . . . . . . . . . . . . 17 ((𝐴𝐶 ∧ (𝑧 𝑥) = 𝑦) → ((𝑧𝐶𝑥𝐴) → 𝑦𝐶))
2423anim2d 612 . . . . . . . . . . . . . . . 16 ((𝐴𝐶 ∧ (𝑧 𝑥) = 𝑦) → ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → (𝑦𝐵𝑦𝐶)))
25 elin 3933 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
2624, 25imbitrrdi 252 . . . . . . . . . . . . . . 15 ((𝐴𝐶 ∧ (𝑧 𝑥) = 𝑦) → ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → 𝑦 ∈ (𝐵𝐶)))
2726ex 412 . . . . . . . . . . . . . 14 (𝐴𝐶 → ((𝑧 𝑥) = 𝑦 → ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → 𝑦 ∈ (𝐵𝐶))))
2827com13 88 . . . . . . . . . . . . 13 ((𝑦𝐵 ∧ (𝑧𝐶𝑥𝐴)) → ((𝑧 𝑥) = 𝑦 → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
2928ancoms 458 . . . . . . . . . . . 12 (((𝑧𝐶𝑥𝐴) ∧ 𝑦𝐵) → ((𝑧 𝑥) = 𝑦 → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
3029anasss 466 . . . . . . . . . . 11 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → ((𝑧 𝑥) = 𝑦 → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
3113, 30sylbird 260 . . . . . . . . . 10 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → (𝑧 = (𝑥 + 𝑦) → (𝐴𝐶𝑦 ∈ (𝐵𝐶))))
3231imp 406 . . . . . . . . 9 (((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝐴𝐶𝑦 ∈ (𝐵𝐶)))
333, 5shincli 31298 . . . . . . . . . . . . . . 15 (𝐵𝐶) ∈ S
342, 33shsvai 31300 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) → (𝑥 + 𝑦) ∈ (𝐴 + (𝐵𝐶)))
35 eleq1 2817 . . . . . . . . . . . . . 14 (𝑧 = (𝑥 + 𝑦) → (𝑧 ∈ (𝐴 + (𝐵𝐶)) ↔ (𝑥 + 𝑦) ∈ (𝐴 + (𝐵𝐶))))
3634, 35imbitrrid 246 . . . . . . . . . . . . 13 (𝑧 = (𝑥 + 𝑦) → ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
3736expd 415 . . . . . . . . . . . 12 (𝑧 = (𝑥 + 𝑦) → (𝑥𝐴 → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶)))))
3837com12 32 . . . . . . . . . . 11 (𝑥𝐴 → (𝑧 = (𝑥 + 𝑦) → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶)))))
3938ad2antrl 728 . . . . . . . . . 10 ((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) → (𝑧 = (𝑥 + 𝑦) → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶)))))
4039imp 406 . . . . . . . . 9 (((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝑦 ∈ (𝐵𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
4132, 40syld 47 . . . . . . . 8 (((𝑧𝐶 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶))))
4241exp31 419 . . . . . . 7 (𝑧𝐶 → ((𝑥𝐴𝑦𝐵) → (𝑧 = (𝑥 + 𝑦) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶))))))
4342rexlimdvv 3194 . . . . . 6 (𝑧𝐶 → (∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥 + 𝑦) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶)))))
444, 43biimtrid 242 . . . . 5 (𝑧𝐶 → (𝑧 ∈ (𝐴 + 𝐵) → (𝐴𝐶𝑧 ∈ (𝐴 + (𝐵𝐶)))))
4544com13 88 . . . 4 (𝐴𝐶 → (𝑧 ∈ (𝐴 + 𝐵) → (𝑧𝐶𝑧 ∈ (𝐴 + (𝐵𝐶)))))
4645impd 410 . . 3 (𝐴𝐶 → ((𝑧 ∈ (𝐴 + 𝐵) ∧ 𝑧𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
471, 46biimtrid 242 . 2 (𝐴𝐶 → (𝑧 ∈ ((𝐴 + 𝐵) ∩ 𝐶) → 𝑧 ∈ (𝐴 + (𝐵𝐶))))
4847ssrdv 3955 1 (𝐴𝐶 → ((𝐴 + 𝐵) ∩ 𝐶) ⊆ (𝐴 + (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  cin 3916  wss 3917  (class class class)co 7390  chba 30855   + cva 30856   cmv 30861   S csh 30864   + cph 30867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-sub 11414  df-neg 11415  df-nn 12194  df-grpo 30429  df-ablo 30481  df-hvsub 30907  df-hlim 30908  df-sh 31143  df-ch 31157  df-shs 31244
This theorem is referenced by:  shmodi  31326
  Copyright terms: Public domain W3C validator