![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfinito2 | Structured version Visualization version GIF version |
Description: An initial object is a terminal object in the opposite category. An alternate definition of df-inito 17976 depending on df-termo 17977. (Contributed by Zhi Wang, 29-Aug-2024.) |
Ref | Expression |
---|---|
dfinito2 | ⊢ InitO = (𝑐 ∈ Cat ↦ (TermO‘(oppCat‘𝑐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inito 17976 | . 2 ⊢ InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)}) | |
2 | eqid 2725 | . . . . . 6 ⊢ (oppCat‘𝑐) = (oppCat‘𝑐) | |
3 | 2 | oppccat 17707 | . . . . 5 ⊢ (𝑐 ∈ Cat → (oppCat‘𝑐) ∈ Cat) |
4 | eqid 2725 | . . . . . 6 ⊢ (Base‘𝑐) = (Base‘𝑐) | |
5 | 2, 4 | oppcbas 17702 | . . . . 5 ⊢ (Base‘𝑐) = (Base‘(oppCat‘𝑐)) |
6 | eqid 2725 | . . . . 5 ⊢ (Hom ‘(oppCat‘𝑐)) = (Hom ‘(oppCat‘𝑐)) | |
7 | 3, 5, 6 | termoval 17986 | . . . 4 ⊢ (𝑐 ∈ Cat → (TermO‘(oppCat‘𝑐)) = {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑏(Hom ‘(oppCat‘𝑐))𝑎)}) |
8 | eqid 2725 | . . . . . . . . 9 ⊢ (Hom ‘𝑐) = (Hom ‘𝑐) | |
9 | 8, 2 | oppchom 17699 | . . . . . . . 8 ⊢ (𝑏(Hom ‘(oppCat‘𝑐))𝑎) = (𝑎(Hom ‘𝑐)𝑏) |
10 | 9 | eleq2i 2817 | . . . . . . 7 ⊢ (ℎ ∈ (𝑏(Hom ‘(oppCat‘𝑐))𝑎) ↔ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)) |
11 | 10 | eubii 2573 | . . . . . 6 ⊢ (∃!ℎ ℎ ∈ (𝑏(Hom ‘(oppCat‘𝑐))𝑎) ↔ ∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)) |
12 | 11 | ralbii 3082 | . . . . 5 ⊢ (∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑏(Hom ‘(oppCat‘𝑐))𝑎) ↔ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)) |
13 | 12 | rabbii 3424 | . . . 4 ⊢ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑏(Hom ‘(oppCat‘𝑐))𝑎)} = {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)} |
14 | 7, 13 | eqtrdi 2781 | . . 3 ⊢ (𝑐 ∈ Cat → (TermO‘(oppCat‘𝑐)) = {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)}) |
15 | 14 | mpteq2ia 5252 | . 2 ⊢ (𝑐 ∈ Cat ↦ (TermO‘(oppCat‘𝑐))) = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)}) |
16 | 1, 15 | eqtr4i 2756 | 1 ⊢ InitO = (𝑐 ∈ Cat ↦ (TermO‘(oppCat‘𝑐))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ∃!weu 2556 ∀wral 3050 {crab 3418 ↦ cmpt 5232 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 Hom chom 17247 Catccat 17647 oppCatcoppc 17694 InitOcinito 17973 TermOctermo 17974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-hom 17260 df-cco 17261 df-cat 17651 df-cid 17652 df-oppc 17695 df-inito 17976 df-termo 17977 |
This theorem is referenced by: dfinito3 17997 |
Copyright terms: Public domain | W3C validator |