MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfis3 Structured version   Visualization version   GIF version

Theorem tfis3 7799
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.)
Hypotheses
Ref Expression
tfis3.1 (𝑥 = 𝑦 → (𝜑𝜓))
tfis3.2 (𝑥 = 𝐴 → (𝜑𝜒))
tfis3.3 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
tfis3 (𝐴 ∈ On → 𝜒)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝜒,𝑥   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem tfis3
StepHypRef Expression
1 tfis3.2 . 2 (𝑥 = 𝐴 → (𝜑𝜒))
2 tfis3.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
3 tfis3.3 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
42, 3tfis2 7798 . 2 (𝑥 ∈ On → 𝜑)
51, 4vtoclga 3537 1 (𝐴 ∈ On → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107  wral 3065  Oncon0 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-tr 5228  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-ord 6325  df-on 6326
This theorem is referenced by:  tfisi  7800  tfinds  7801  tfrlem1  8327  naddid1  8634  naddssim  8636  ordtypelem7  9467  rankonidlem  9771  tcrank  9827  infxpenlem  9956  alephle  10031  dfac12lem3  10088  ttukeylem5  10456  ttukeylem6  10457  tskord  10723  grudomon  10760  madebdayim  27239  madebday  27251  aomclem6  41415  nadd1suc  41737
  Copyright terms: Public domain W3C validator