![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfis3 | Structured version Visualization version GIF version |
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.) |
Ref | Expression |
---|---|
tfis3.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
tfis3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
tfis3.3 | ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
Ref | Expression |
---|---|
tfis3 | ⊢ (𝐴 ∈ On → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfis3.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | tfis3.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | tfis3.3 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
4 | 2, 3 | tfis2 7867 | . 2 ⊢ (𝑥 ∈ On → 𝜑) |
5 | 1, 4 | vtoclga 3558 | 1 ⊢ (𝐴 ∈ On → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∀wral 3051 Oncon0 6376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-tr 5271 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-ord 6379 df-on 6380 |
This theorem is referenced by: tfisi 7869 tfinds 7870 tfrlem1 8406 naddrid 8713 naddssim 8715 ordtypelem7 9567 rankonidlem 9871 tcrank 9927 infxpenlem 10056 alephle 10131 dfac12lem3 10188 ttukeylem5 10556 ttukeylem6 10557 tskord 10823 grudomon 10860 madebdayim 27911 madebday 27923 aomclem6 42720 nadd1suc 43058 |
Copyright terms: Public domain | W3C validator |