| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfis3 | Structured version Visualization version GIF version | ||
| Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.) |
| Ref | Expression |
|---|---|
| tfis3.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| tfis3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| tfis3.3 | ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| tfis3 | ⊢ (𝐴 ∈ On → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfis3.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | tfis3.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | tfis3.3 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
| 4 | 2, 3 | tfis2 7833 | . 2 ⊢ (𝑥 ∈ On → 𝜑) |
| 5 | 1, 4 | vtoclga 3543 | 1 ⊢ (𝐴 ∈ On → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: tfisi 7835 tfinds 7836 tfrlem1 8344 naddrid 8647 naddssim 8649 ordtypelem7 9477 rankonidlem 9781 tcrank 9837 infxpenlem 9966 alephle 10041 dfac12lem3 10099 ttukeylem5 10466 ttukeylem6 10467 tskord 10733 grudomon 10770 madebdayim 27799 madebday 27811 aomclem6 43048 nadd1suc 43381 |
| Copyright terms: Public domain | W3C validator |