MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfis3 Structured version   Visualization version   GIF version

Theorem tfis3 7837
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.)
Hypotheses
Ref Expression
tfis3.1 (𝑥 = 𝑦 → (𝜑𝜓))
tfis3.2 (𝑥 = 𝐴 → (𝜑𝜒))
tfis3.3 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
tfis3 (𝐴 ∈ On → 𝜒)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝜒,𝑥   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem tfis3
StepHypRef Expression
1 tfis3.2 . 2 (𝑥 = 𝐴 → (𝜑𝜒))
2 tfis3.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
3 tfis3.3 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
42, 3tfis2 7836 . 2 (𝑥 ∈ On → 𝜑)
51, 4vtoclga 3546 1 (𝐴 ∈ On → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3045  Oncon0 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339
This theorem is referenced by:  tfisi  7838  tfinds  7839  tfrlem1  8347  naddrid  8650  naddssim  8652  ordtypelem7  9484  rankonidlem  9788  tcrank  9844  infxpenlem  9973  alephle  10048  dfac12lem3  10106  ttukeylem5  10473  ttukeylem6  10474  tskord  10740  grudomon  10777  madebdayim  27806  madebday  27818  aomclem6  43055  nadd1suc  43388
  Copyright terms: Public domain W3C validator