| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfis3 | Structured version Visualization version GIF version | ||
| Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.) |
| Ref | Expression |
|---|---|
| tfis3.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| tfis3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| tfis3.3 | ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| tfis3 | ⊢ (𝐴 ∈ On → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfis3.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | tfis3.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | tfis3.3 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
| 4 | 2, 3 | tfis2 7852 | . 2 ⊢ (𝑥 ∈ On → 𝜑) |
| 5 | 1, 4 | vtoclga 3556 | 1 ⊢ (𝐴 ∈ On → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: tfisi 7854 tfinds 7855 tfrlem1 8390 naddrid 8695 naddssim 8697 ordtypelem7 9538 rankonidlem 9842 tcrank 9898 infxpenlem 10027 alephle 10102 dfac12lem3 10160 ttukeylem5 10527 ttukeylem6 10528 tskord 10794 grudomon 10831 madebdayim 27851 madebday 27863 aomclem6 43083 nadd1suc 43416 |
| Copyright terms: Public domain | W3C validator |