MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitg Structured version   Visualization version   GIF version

Theorem unitg 21179
Description: The topology generated by a basis 𝐵 is a topology on 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.)
Assertion
Ref Expression
unitg (𝐵𝑉 (topGen‘𝐵) = 𝐵)

Proof of Theorem unitg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tg1 21176 . . . . . 6 (𝑥 ∈ (topGen‘𝐵) → 𝑥 𝐵)
2 selpw 4386 . . . . . 6 (𝑥 ∈ 𝒫 𝐵𝑥 𝐵)
31, 2sylibr 226 . . . . 5 (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ 𝒫 𝐵)
43ssriv 3825 . . . 4 (topGen‘𝐵) ⊆ 𝒫 𝐵
5 sspwuni 4845 . . . 4 ((topGen‘𝐵) ⊆ 𝒫 𝐵 (topGen‘𝐵) ⊆ 𝐵)
64, 5mpbi 222 . . 3 (topGen‘𝐵) ⊆ 𝐵
76a1i 11 . 2 (𝐵𝑉 (topGen‘𝐵) ⊆ 𝐵)
8 bastg 21178 . . 3 (𝐵𝑉𝐵 ⊆ (topGen‘𝐵))
98unissd 4697 . 2 (𝐵𝑉 𝐵 (topGen‘𝐵))
107, 9eqssd 3838 1 (𝐵𝑉 (topGen‘𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  wss 3792  𝒫 cpw 4379   cuni 4671  cfv 6135  topGenctg 16484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fv 6143  df-topgen 16490
This theorem is referenced by:  tgcl  21181  tgtopon  21183  tgcmp  21613  2ndcsep  21671  txtopon  21803  ptuni  21806  xkouni  21811  prdstopn  21840  tgqtop  21924  alexsubb  22258  alexsubALTlem3  22261  alexsubALTlem4  22262  ptcmplem1  22264  uniretop  22974  fneval  32935  fnemeet1  32949  kelac2  38594
  Copyright terms: Public domain W3C validator