MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitg Structured version   Visualization version   GIF version

Theorem unitg 22025
Description: The topology generated by a basis 𝐵 is a topology on 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.)
Assertion
Ref Expression
unitg (𝐵𝑉 (topGen‘𝐵) = 𝐵)

Proof of Theorem unitg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tg1 22022 . . . . . 6 (𝑥 ∈ (topGen‘𝐵) → 𝑥 𝐵)
2 velpw 4535 . . . . . 6 (𝑥 ∈ 𝒫 𝐵𝑥 𝐵)
31, 2sylibr 233 . . . . 5 (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ 𝒫 𝐵)
43ssriv 3921 . . . 4 (topGen‘𝐵) ⊆ 𝒫 𝐵
5 sspwuni 5025 . . . 4 ((topGen‘𝐵) ⊆ 𝒫 𝐵 (topGen‘𝐵) ⊆ 𝐵)
64, 5mpbi 229 . . 3 (topGen‘𝐵) ⊆ 𝐵
76a1i 11 . 2 (𝐵𝑉 (topGen‘𝐵) ⊆ 𝐵)
8 bastg 22024 . . 3 (𝐵𝑉𝐵 ⊆ (topGen‘𝐵))
98unissd 4846 . 2 (𝐵𝑉 𝐵 (topGen‘𝐵))
107, 9eqssd 3934 1 (𝐵𝑉 (topGen‘𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883  𝒫 cpw 4530   cuni 4836  cfv 6418  topGenctg 17065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-topgen 17071
This theorem is referenced by:  tgcl  22027  tgtopon  22029  tgcmp  22460  2ndcsep  22518  txtopon  22650  ptuni  22653  xkouni  22658  prdstopn  22687  tgqtop  22771  alexsubb  23105  alexsubALTlem3  23108  alexsubALTlem4  23109  ptcmplem1  23111  uniretop  23832  fneval  34468  fnemeet1  34482  kelac2  40806
  Copyright terms: Public domain W3C validator