| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitg | Structured version Visualization version GIF version | ||
| Description: The topology generated by a basis 𝐵 is a topology on ∪ 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.) |
| Ref | Expression |
|---|---|
| unitg | ⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) = ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tg1 22907 | . . . . . 6 ⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 ⊆ ∪ 𝐵) | |
| 2 | velpw 4585 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐵 ↔ 𝑥 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | sylibr 234 | . . . . 5 ⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ 𝒫 ∪ 𝐵) |
| 4 | 3 | ssriv 3967 | . . . 4 ⊢ (topGen‘𝐵) ⊆ 𝒫 ∪ 𝐵 |
| 5 | sspwuni 5081 | . . . 4 ⊢ ((topGen‘𝐵) ⊆ 𝒫 ∪ 𝐵 ↔ ∪ (topGen‘𝐵) ⊆ ∪ 𝐵) | |
| 6 | 4, 5 | mpbi 230 | . . 3 ⊢ ∪ (topGen‘𝐵) ⊆ ∪ 𝐵 |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) ⊆ ∪ 𝐵) |
| 8 | bastg 22909 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) | |
| 9 | 8 | unissd 4898 | . 2 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ⊆ ∪ (topGen‘𝐵)) |
| 10 | 7, 9 | eqssd 3981 | 1 ⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) = ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4888 ‘cfv 6536 topGenctg 17456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-topgen 17462 |
| This theorem is referenced by: tgcl 22912 tgtopon 22914 tgcmp 23344 2ndcsep 23402 txtopon 23534 ptuni 23537 xkouni 23542 prdstopn 23571 tgqtop 23655 alexsubb 23989 alexsubALTlem3 23992 alexsubALTlem4 23993 ptcmplem1 23995 uniretop 24706 fneval 36375 fnemeet1 36389 kelac2 43056 |
| Copyright terms: Public domain | W3C validator |