MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitg Structured version   Visualization version   GIF version

Theorem unitg 22995
Description: The topology generated by a basis 𝐵 is a topology on 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.)
Assertion
Ref Expression
unitg (𝐵𝑉 (topGen‘𝐵) = 𝐵)

Proof of Theorem unitg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tg1 22992 . . . . . 6 (𝑥 ∈ (topGen‘𝐵) → 𝑥 𝐵)
2 velpw 4627 . . . . . 6 (𝑥 ∈ 𝒫 𝐵𝑥 𝐵)
31, 2sylibr 234 . . . . 5 (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ 𝒫 𝐵)
43ssriv 4012 . . . 4 (topGen‘𝐵) ⊆ 𝒫 𝐵
5 sspwuni 5123 . . . 4 ((topGen‘𝐵) ⊆ 𝒫 𝐵 (topGen‘𝐵) ⊆ 𝐵)
64, 5mpbi 230 . . 3 (topGen‘𝐵) ⊆ 𝐵
76a1i 11 . 2 (𝐵𝑉 (topGen‘𝐵) ⊆ 𝐵)
8 bastg 22994 . . 3 (𝐵𝑉𝐵 ⊆ (topGen‘𝐵))
98unissd 4941 . 2 (𝐵𝑉 𝐵 (topGen‘𝐵))
107, 9eqssd 4026 1 (𝐵𝑉 (topGen‘𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wss 3976  𝒫 cpw 4622   cuni 4931  cfv 6573  topGenctg 17497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-topgen 17503
This theorem is referenced by:  tgcl  22997  tgtopon  22999  tgcmp  23430  2ndcsep  23488  txtopon  23620  ptuni  23623  xkouni  23628  prdstopn  23657  tgqtop  23741  alexsubb  24075  alexsubALTlem3  24078  alexsubALTlem4  24079  ptcmplem1  24081  uniretop  24804  fneval  36318  fnemeet1  36332  kelac2  43022
  Copyright terms: Public domain W3C validator