| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitg | Structured version Visualization version GIF version | ||
| Description: The topology generated by a basis 𝐵 is a topology on ∪ 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.) |
| Ref | Expression |
|---|---|
| unitg | ⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) = ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tg1 22858 | . . . . . 6 ⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 ⊆ ∪ 𝐵) | |
| 2 | velpw 4571 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐵 ↔ 𝑥 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | sylibr 234 | . . . . 5 ⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ 𝒫 ∪ 𝐵) |
| 4 | 3 | ssriv 3953 | . . . 4 ⊢ (topGen‘𝐵) ⊆ 𝒫 ∪ 𝐵 |
| 5 | sspwuni 5067 | . . . 4 ⊢ ((topGen‘𝐵) ⊆ 𝒫 ∪ 𝐵 ↔ ∪ (topGen‘𝐵) ⊆ ∪ 𝐵) | |
| 6 | 4, 5 | mpbi 230 | . . 3 ⊢ ∪ (topGen‘𝐵) ⊆ ∪ 𝐵 |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) ⊆ ∪ 𝐵) |
| 8 | bastg 22860 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) | |
| 9 | 8 | unissd 4884 | . 2 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ⊆ ∪ (topGen‘𝐵)) |
| 10 | 7, 9 | eqssd 3967 | 1 ⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) = ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 ‘cfv 6514 topGenctg 17407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-topgen 17413 |
| This theorem is referenced by: tgcl 22863 tgtopon 22865 tgcmp 23295 2ndcsep 23353 txtopon 23485 ptuni 23488 xkouni 23493 prdstopn 23522 tgqtop 23606 alexsubb 23940 alexsubALTlem3 23943 alexsubALTlem4 23944 ptcmplem1 23946 uniretop 24657 fneval 36347 fnemeet1 36361 kelac2 43061 |
| Copyright terms: Public domain | W3C validator |