![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitg | Structured version Visualization version GIF version |
Description: The topology generated by a basis 𝐵 is a topology on ∪ 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.) |
Ref | Expression |
---|---|
unitg | ⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) = ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tg1 21176 | . . . . . 6 ⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 ⊆ ∪ 𝐵) | |
2 | selpw 4386 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐵 ↔ 𝑥 ⊆ ∪ 𝐵) | |
3 | 1, 2 | sylibr 226 | . . . . 5 ⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ 𝒫 ∪ 𝐵) |
4 | 3 | ssriv 3825 | . . . 4 ⊢ (topGen‘𝐵) ⊆ 𝒫 ∪ 𝐵 |
5 | sspwuni 4845 | . . . 4 ⊢ ((topGen‘𝐵) ⊆ 𝒫 ∪ 𝐵 ↔ ∪ (topGen‘𝐵) ⊆ ∪ 𝐵) | |
6 | 4, 5 | mpbi 222 | . . 3 ⊢ ∪ (topGen‘𝐵) ⊆ ∪ 𝐵 |
7 | 6 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) ⊆ ∪ 𝐵) |
8 | bastg 21178 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) | |
9 | 8 | unissd 4697 | . 2 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ⊆ ∪ (topGen‘𝐵)) |
10 | 7, 9 | eqssd 3838 | 1 ⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) = ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 𝒫 cpw 4379 ∪ cuni 4671 ‘cfv 6135 topGenctg 16484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-topgen 16490 |
This theorem is referenced by: tgcl 21181 tgtopon 21183 tgcmp 21613 2ndcsep 21671 txtopon 21803 ptuni 21806 xkouni 21811 prdstopn 21840 tgqtop 21924 alexsubb 22258 alexsubALTlem3 22261 alexsubALTlem4 22262 ptcmplem1 22264 uniretop 22974 fneval 32935 fnemeet1 32949 kelac2 38594 |
Copyright terms: Public domain | W3C validator |