| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitg | Structured version Visualization version GIF version | ||
| Description: The topology generated by a basis 𝐵 is a topology on ∪ 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.) |
| Ref | Expression |
|---|---|
| unitg | ⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) = ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tg1 22880 | . . . . . 6 ⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 ⊆ ∪ 𝐵) | |
| 2 | velpw 4554 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐵 ↔ 𝑥 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | sylibr 234 | . . . . 5 ⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ 𝒫 ∪ 𝐵) |
| 4 | 3 | ssriv 3934 | . . . 4 ⊢ (topGen‘𝐵) ⊆ 𝒫 ∪ 𝐵 |
| 5 | sspwuni 5050 | . . . 4 ⊢ ((topGen‘𝐵) ⊆ 𝒫 ∪ 𝐵 ↔ ∪ (topGen‘𝐵) ⊆ ∪ 𝐵) | |
| 6 | 4, 5 | mpbi 230 | . . 3 ⊢ ∪ (topGen‘𝐵) ⊆ ∪ 𝐵 |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) ⊆ ∪ 𝐵) |
| 8 | bastg 22882 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) | |
| 9 | 8 | unissd 4868 | . 2 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ⊆ ∪ (topGen‘𝐵)) |
| 10 | 7, 9 | eqssd 3948 | 1 ⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) = ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 𝒫 cpw 4549 ∪ cuni 4858 ‘cfv 6486 topGenctg 17343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-topgen 17349 |
| This theorem is referenced by: tgcl 22885 tgtopon 22887 tgcmp 23317 2ndcsep 23375 txtopon 23507 ptuni 23510 xkouni 23515 prdstopn 23544 tgqtop 23628 alexsubb 23962 alexsubALTlem3 23965 alexsubALTlem4 23966 ptcmplem1 23968 uniretop 24678 fneval 36417 fnemeet1 36431 kelac2 43182 |
| Copyright terms: Public domain | W3C validator |