MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clssubg Structured version   Visualization version   GIF version

Theorem clssubg 23972
Description: The closure of a subgroup in a topological group is a subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
clssubg ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺))

Proof of Theorem clssubg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgntr.h . . . . . . 7 𝐽 = (TopOpen‘𝐺)
2 eqid 2729 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
31, 2tgptopon 23945 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
43adantr 480 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
5 topontop 22776 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
64, 5syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐽 ∈ Top)
72subgss 19035 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
87adantl 481 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
9 toponuni 22777 . . . . . 6 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
104, 9syl 17 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (Base‘𝐺) = 𝐽)
118, 10sseqtrd 3980 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 𝐽)
12 eqid 2729 . . . . 5 𝐽 = 𝐽
1312clsss3 22922 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
146, 11, 13syl2anc 584 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
1514, 10sseqtrrd 3981 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺))
1612sscls 22919 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
176, 11, 16syl2anc 584 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
18 eqid 2729 . . . . . 6 (0g𝐺) = (0g𝐺)
1918subg0cl 19042 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
2019adantl 481 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (0g𝐺) ∈ 𝑆)
2120ne0d 4301 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ≠ ∅)
22 ssn0 4363 . . 3 ((𝑆 ⊆ ((cls‘𝐽)‘𝑆) ∧ 𝑆 ≠ ∅) → ((cls‘𝐽)‘𝑆) ≠ ∅)
2317, 21, 22syl2anc 584 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ≠ ∅)
24 df-ov 7372 . . . 4 (𝑥(-g𝐺)𝑦) = ((-g𝐺)‘⟨𝑥, 𝑦⟩)
25 opelxpi 5668 . . . . . . 7 ((𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆)) → ⟨𝑥, 𝑦⟩ ∈ (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆)))
26 txcls 23467 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺))) ∧ (𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺))) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) = (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆)))
274, 4, 8, 8, 26syl22anc 838 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) = (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆)))
28 txtopon 23454 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺))) → (𝐽 ×t 𝐽) ∈ (TopOn‘((Base‘𝐺) × (Base‘𝐺))))
294, 4, 28syl2anc 584 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐽 ×t 𝐽) ∈ (TopOn‘((Base‘𝐺) × (Base‘𝐺))))
30 topontop 22776 . . . . . . . . . . . 12 ((𝐽 ×t 𝐽) ∈ (TopOn‘((Base‘𝐺) × (Base‘𝐺))) → (𝐽 ×t 𝐽) ∈ Top)
3129, 30syl 17 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐽 ×t 𝐽) ∈ Top)
32 cnvimass 6042 . . . . . . . . . . . . 13 ((-g𝐺) “ 𝑆) ⊆ dom (-g𝐺)
33 tgpgrp 23941 . . . . . . . . . . . . . . 15 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
3433adantr 480 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
35 eqid 2729 . . . . . . . . . . . . . . 15 (-g𝐺) = (-g𝐺)
362, 35grpsubf 18927 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
3734, 36syl 17 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
3832, 37fssdm 6689 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((-g𝐺) “ 𝑆) ⊆ ((Base‘𝐺) × (Base‘𝐺)))
39 toponuni 22777 . . . . . . . . . . . . 13 ((𝐽 ×t 𝐽) ∈ (TopOn‘((Base‘𝐺) × (Base‘𝐺))) → ((Base‘𝐺) × (Base‘𝐺)) = (𝐽 ×t 𝐽))
4029, 39syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((Base‘𝐺) × (Base‘𝐺)) = (𝐽 ×t 𝐽))
4138, 40sseqtrd 3980 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((-g𝐺) “ 𝑆) ⊆ (𝐽 ×t 𝐽))
4235subgsubcl 19045 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥(-g𝐺)𝑦) ∈ 𝑆)
43423expb 1120 . . . . . . . . . . . . . . 15 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(-g𝐺)𝑦) ∈ 𝑆)
4443ralrimivva 3178 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥𝑆𝑦𝑆 (𝑥(-g𝐺)𝑦) ∈ 𝑆)
45 fveq2 6840 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑥, 𝑦⟩ → ((-g𝐺)‘𝑧) = ((-g𝐺)‘⟨𝑥, 𝑦⟩))
4645, 24eqtr4di 2782 . . . . . . . . . . . . . . . 16 (𝑧 = ⟨𝑥, 𝑦⟩ → ((-g𝐺)‘𝑧) = (𝑥(-g𝐺)𝑦))
4746eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑥, 𝑦⟩ → (((-g𝐺)‘𝑧) ∈ 𝑆 ↔ (𝑥(-g𝐺)𝑦) ∈ 𝑆))
4847ralxp 5795 . . . . . . . . . . . . . 14 (∀𝑧 ∈ (𝑆 × 𝑆)((-g𝐺)‘𝑧) ∈ 𝑆 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(-g𝐺)𝑦) ∈ 𝑆)
4944, 48sylibr 234 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑧 ∈ (𝑆 × 𝑆)((-g𝐺)‘𝑧) ∈ 𝑆)
5049adantl 481 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑧 ∈ (𝑆 × 𝑆)((-g𝐺)‘𝑧) ∈ 𝑆)
5137ffund 6674 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → Fun (-g𝐺))
52 xpss12 5646 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑆 × 𝑆) ⊆ ((Base‘𝐺) × (Base‘𝐺)))
538, 8, 52syl2anc 584 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑆) ⊆ ((Base‘𝐺) × (Base‘𝐺)))
5437fdmd 6680 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → dom (-g𝐺) = ((Base‘𝐺) × (Base‘𝐺)))
5553, 54sseqtrrd 3981 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑆) ⊆ dom (-g𝐺))
56 funimass5 7009 . . . . . . . . . . . . 13 ((Fun (-g𝐺) ∧ (𝑆 × 𝑆) ⊆ dom (-g𝐺)) → ((𝑆 × 𝑆) ⊆ ((-g𝐺) “ 𝑆) ↔ ∀𝑧 ∈ (𝑆 × 𝑆)((-g𝐺)‘𝑧) ∈ 𝑆))
5751, 55, 56syl2anc 584 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((𝑆 × 𝑆) ⊆ ((-g𝐺) “ 𝑆) ↔ ∀𝑧 ∈ (𝑆 × 𝑆)((-g𝐺)‘𝑧) ∈ 𝑆))
5850, 57mpbird 257 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑆) ⊆ ((-g𝐺) “ 𝑆))
59 eqid 2729 . . . . . . . . . . . 12 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
6059clsss 22917 . . . . . . . . . . 11 (((𝐽 ×t 𝐽) ∈ Top ∧ ((-g𝐺) “ 𝑆) ⊆ (𝐽 ×t 𝐽) ∧ (𝑆 × 𝑆) ⊆ ((-g𝐺) “ 𝑆)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) ⊆ ((cls‘(𝐽 ×t 𝐽))‘((-g𝐺) “ 𝑆)))
6131, 41, 58, 60syl3anc 1373 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) ⊆ ((cls‘(𝐽 ×t 𝐽))‘((-g𝐺) “ 𝑆)))
621, 35tgpsubcn 23953 . . . . . . . . . . . 12 (𝐺 ∈ TopGrp → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
6362adantr 480 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
6412cncls2i 23133 . . . . . . . . . . 11 (((-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ 𝑆 𝐽) → ((cls‘(𝐽 ×t 𝐽))‘((-g𝐺) “ 𝑆)) ⊆ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
6563, 11, 64syl2anc 584 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘((-g𝐺) “ 𝑆)) ⊆ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
6661, 65sstrd 3954 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) ⊆ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
6727, 66eqsstrrd 3979 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆)) ⊆ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
6867sselda 3943 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ ⟨𝑥, 𝑦⟩ ∈ (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆))) → ⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
6925, 68sylan2 593 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → ⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
7033ad2antrr 726 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → 𝐺 ∈ Grp)
71 ffn 6670 . . . . . . 7 ((-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) → (-g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)))
72 elpreima 7012 . . . . . . 7 ((-g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)) → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)) ↔ (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ ((cls‘𝐽)‘𝑆))))
7370, 36, 71, 724syl 19 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)) ↔ (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ ((cls‘𝐽)‘𝑆))))
7469, 73mpbid 232 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ ((cls‘𝐽)‘𝑆)))
7574simprd 495 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ ((cls‘𝐽)‘𝑆))
7624, 75eqeltrid 2832 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → (𝑥(-g𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆))
7776ralrimivva 3178 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ ((cls‘𝐽)‘𝑆)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(-g𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆))
782, 35issubg4 19053 . . 3 (𝐺 ∈ Grp → (((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺) ↔ (((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺) ∧ ((cls‘𝐽)‘𝑆) ≠ ∅ ∧ ∀𝑥 ∈ ((cls‘𝐽)‘𝑆)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(-g𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆))))
7934, 78syl 17 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺) ↔ (((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺) ∧ ((cls‘𝐽)‘𝑆) ≠ ∅ ∧ ∀𝑥 ∈ ((cls‘𝐽)‘𝑆)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(-g𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆))))
8015, 23, 77, 79mpbir3and 1343 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3911  c0 4292  cop 4591   cuni 4867   × cxp 5629  ccnv 5630  dom cdm 5631  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  TopOpenctopn 17360  0gc0g 17378  Grpcgrp 18841  -gcsg 18843  SubGrpcsubg 19028  Topctop 22756  TopOnctopon 22773  clsccl 22881   Cn ccn 23087   ×t ctx 23423  TopGrpctgp 23934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-topgen 17382  df-plusf 18542  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-cn 23090  df-tx 23425  df-tmd 23935  df-tgp 23936
This theorem is referenced by:  clsnsg  23973  tgptsmscls  24013
  Copyright terms: Public domain W3C validator