Step | Hyp | Ref
| Expression |
1 | | subgntr.h |
. . . . . . 7
⊢ 𝐽 = (TopOpen‘𝐺) |
2 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
3 | 1, 2 | tgptopon 23141 |
. . . . . 6
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈
(TopOn‘(Base‘𝐺))) |
4 | 3 | adantr 480 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
5 | | topontop 21970 |
. . . . 5
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top) |
6 | 4, 5 | syl 17 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐽 ∈ Top) |
7 | 2 | subgss 18671 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
8 | 7 | adantl 481 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺)) |
9 | | toponuni 21971 |
. . . . . 6
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) |
10 | 4, 9 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (Base‘𝐺) = ∪
𝐽) |
11 | 8, 10 | sseqtrd 3957 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ ∪ 𝐽) |
12 | | eqid 2738 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
13 | 12 | clsss3 22118 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
14 | 6, 11, 13 | syl2anc 583 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
15 | 14, 10 | sseqtrrd 3958 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺)) |
16 | 12 | sscls 22115 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ 𝑆 ⊆
((cls‘𝐽)‘𝑆)) |
17 | 6, 11, 16 | syl2anc 583 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
18 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
19 | 18 | subg0cl 18678 |
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝑆) |
20 | 19 | adantl 481 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) →
(0g‘𝐺)
∈ 𝑆) |
21 | 20 | ne0d 4266 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ≠ ∅) |
22 | | ssn0 4331 |
. . 3
⊢ ((𝑆 ⊆ ((cls‘𝐽)‘𝑆) ∧ 𝑆 ≠ ∅) → ((cls‘𝐽)‘𝑆) ≠ ∅) |
23 | 17, 21, 22 | syl2anc 583 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ≠ ∅) |
24 | | df-ov 7258 |
. . . 4
⊢ (𝑥(-g‘𝐺)𝑦) = ((-g‘𝐺)‘〈𝑥, 𝑦〉) |
25 | | opelxpi 5617 |
. . . . . . 7
⊢ ((𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆)) → 〈𝑥, 𝑦〉 ∈ (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆))) |
26 | | txcls 22663 |
. . . . . . . . . 10
⊢ (((𝐽 ∈
(TopOn‘(Base‘𝐺)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺))) ∧ (𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺))) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) = (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆))) |
27 | 4, 4, 8, 8, 26 | syl22anc 835 |
. . . . . . . . 9
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) = (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆))) |
28 | | txtopon 22650 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈
(TopOn‘(Base‘𝐺)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺))) → (𝐽 ×t 𝐽) ∈ (TopOn‘((Base‘𝐺) × (Base‘𝐺)))) |
29 | 4, 4, 28 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐽 ×t 𝐽) ∈ (TopOn‘((Base‘𝐺) × (Base‘𝐺)))) |
30 | | topontop 21970 |
. . . . . . . . . . . 12
⊢ ((𝐽 ×t 𝐽) ∈
(TopOn‘((Base‘𝐺) × (Base‘𝐺))) → (𝐽 ×t 𝐽) ∈ Top) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐽 ×t 𝐽) ∈ Top) |
32 | | cnvimass 5978 |
. . . . . . . . . . . . 13
⊢ (◡(-g‘𝐺) “ 𝑆) ⊆ dom (-g‘𝐺) |
33 | | tgpgrp 23137 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
34 | 33 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp) |
35 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(-g‘𝐺) = (-g‘𝐺) |
36 | 2, 35 | grpsubf 18569 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ Grp →
(-g‘𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺)) |
37 | 34, 36 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) →
(-g‘𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺)) |
38 | 32, 37 | fssdm 6604 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (◡(-g‘𝐺) “ 𝑆) ⊆ ((Base‘𝐺) × (Base‘𝐺))) |
39 | | toponuni 21971 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ×t 𝐽) ∈
(TopOn‘((Base‘𝐺) × (Base‘𝐺))) → ((Base‘𝐺) × (Base‘𝐺)) = ∪ (𝐽 ×t 𝐽)) |
40 | 29, 39 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((Base‘𝐺) × (Base‘𝐺)) = ∪ (𝐽
×t 𝐽)) |
41 | 38, 40 | sseqtrd 3957 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (◡(-g‘𝐺) “ 𝑆) ⊆ ∪
(𝐽 ×t
𝐽)) |
42 | 35 | subgsubcl 18681 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥(-g‘𝐺)𝑦) ∈ 𝑆) |
43 | 42 | 3expb 1118 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(-g‘𝐺)𝑦) ∈ 𝑆) |
44 | 43 | ralrimivva 3114 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(-g‘𝐺)𝑦) ∈ 𝑆) |
45 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((-g‘𝐺)‘𝑧) = ((-g‘𝐺)‘〈𝑥, 𝑦〉)) |
46 | 45, 24 | eqtr4di 2797 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((-g‘𝐺)‘𝑧) = (𝑥(-g‘𝐺)𝑦)) |
47 | 46 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (((-g‘𝐺)‘𝑧) ∈ 𝑆 ↔ (𝑥(-g‘𝐺)𝑦) ∈ 𝑆)) |
48 | 47 | ralxp 5739 |
. . . . . . . . . . . . . 14
⊢
(∀𝑧 ∈
(𝑆 × 𝑆)((-g‘𝐺)‘𝑧) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(-g‘𝐺)𝑦) ∈ 𝑆) |
49 | 44, 48 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑧 ∈ (𝑆 × 𝑆)((-g‘𝐺)‘𝑧) ∈ 𝑆) |
50 | 49 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑧 ∈ (𝑆 × 𝑆)((-g‘𝐺)‘𝑧) ∈ 𝑆) |
51 | 37 | ffund 6588 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → Fun
(-g‘𝐺)) |
52 | | xpss12 5595 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑆 × 𝑆) ⊆ ((Base‘𝐺) × (Base‘𝐺))) |
53 | 8, 8, 52 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑆) ⊆ ((Base‘𝐺) × (Base‘𝐺))) |
54 | 37 | fdmd 6595 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → dom
(-g‘𝐺) =
((Base‘𝐺) ×
(Base‘𝐺))) |
55 | 53, 54 | sseqtrrd 3958 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑆) ⊆ dom (-g‘𝐺)) |
56 | | funimass5 6914 |
. . . . . . . . . . . . 13
⊢ ((Fun
(-g‘𝐺)
∧ (𝑆 × 𝑆) ⊆ dom
(-g‘𝐺))
→ ((𝑆 × 𝑆) ⊆ (◡(-g‘𝐺) “ 𝑆) ↔ ∀𝑧 ∈ (𝑆 × 𝑆)((-g‘𝐺)‘𝑧) ∈ 𝑆)) |
57 | 51, 55, 56 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((𝑆 × 𝑆) ⊆ (◡(-g‘𝐺) “ 𝑆) ↔ ∀𝑧 ∈ (𝑆 × 𝑆)((-g‘𝐺)‘𝑧) ∈ 𝑆)) |
58 | 50, 57 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑆) ⊆ (◡(-g‘𝐺) “ 𝑆)) |
59 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ∪ (𝐽
×t 𝐽) =
∪ (𝐽 ×t 𝐽) |
60 | 59 | clsss 22113 |
. . . . . . . . . . 11
⊢ (((𝐽 ×t 𝐽) ∈ Top ∧ (◡(-g‘𝐺) “ 𝑆) ⊆ ∪
(𝐽 ×t
𝐽) ∧ (𝑆 × 𝑆) ⊆ (◡(-g‘𝐺) “ 𝑆)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) ⊆ ((cls‘(𝐽 ×t 𝐽))‘(◡(-g‘𝐺) “ 𝑆))) |
61 | 31, 41, 58, 60 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) ⊆ ((cls‘(𝐽 ×t 𝐽))‘(◡(-g‘𝐺) “ 𝑆))) |
62 | 1, 35 | tgpsubcn 23149 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ TopGrp →
(-g‘𝐺)
∈ ((𝐽
×t 𝐽) Cn
𝐽)) |
63 | 62 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) →
(-g‘𝐺)
∈ ((𝐽
×t 𝐽) Cn
𝐽)) |
64 | 12 | cncls2i 22329 |
. . . . . . . . . . 11
⊢
(((-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ 𝑆 ⊆ ∪ 𝐽) → ((cls‘(𝐽 ×t 𝐽))‘(◡(-g‘𝐺) “ 𝑆)) ⊆ (◡(-g‘𝐺) “ ((cls‘𝐽)‘𝑆))) |
65 | 63, 11, 64 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘(◡(-g‘𝐺) “ 𝑆)) ⊆ (◡(-g‘𝐺) “ ((cls‘𝐽)‘𝑆))) |
66 | 61, 65 | sstrd 3927 |
. . . . . . . . 9
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) ⊆ (◡(-g‘𝐺) “ ((cls‘𝐽)‘𝑆))) |
67 | 27, 66 | eqsstrrd 3956 |
. . . . . . . 8
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆)) ⊆ (◡(-g‘𝐺) “ ((cls‘𝐽)‘𝑆))) |
68 | 67 | sselda 3917 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 〈𝑥, 𝑦〉 ∈ (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆))) → 〈𝑥, 𝑦〉 ∈ (◡(-g‘𝐺) “ ((cls‘𝐽)‘𝑆))) |
69 | 25, 68 | sylan2 592 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → 〈𝑥, 𝑦〉 ∈ (◡(-g‘𝐺) “ ((cls‘𝐽)‘𝑆))) |
70 | 33 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → 𝐺 ∈ Grp) |
71 | | ffn 6584 |
. . . . . . 7
⊢
((-g‘𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) → (-g‘𝐺) Fn ((Base‘𝐺) × (Base‘𝐺))) |
72 | | elpreima 6917 |
. . . . . . 7
⊢
((-g‘𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)) → (〈𝑥, 𝑦〉 ∈ (◡(-g‘𝐺) “ ((cls‘𝐽)‘𝑆)) ↔ (〈𝑥, 𝑦〉 ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g‘𝐺)‘〈𝑥, 𝑦〉) ∈ ((cls‘𝐽)‘𝑆)))) |
73 | 70, 36, 71, 72 | 4syl 19 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → (〈𝑥, 𝑦〉 ∈ (◡(-g‘𝐺) “ ((cls‘𝐽)‘𝑆)) ↔ (〈𝑥, 𝑦〉 ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g‘𝐺)‘〈𝑥, 𝑦〉) ∈ ((cls‘𝐽)‘𝑆)))) |
74 | 69, 73 | mpbid 231 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → (〈𝑥, 𝑦〉 ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g‘𝐺)‘〈𝑥, 𝑦〉) ∈ ((cls‘𝐽)‘𝑆))) |
75 | 74 | simprd 495 |
. . . 4
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → ((-g‘𝐺)‘〈𝑥, 𝑦〉) ∈ ((cls‘𝐽)‘𝑆)) |
76 | 24, 75 | eqeltrid 2843 |
. . 3
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → (𝑥(-g‘𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆)) |
77 | 76 | ralrimivva 3114 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ ((cls‘𝐽)‘𝑆)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(-g‘𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆)) |
78 | 2, 35 | issubg4 18689 |
. . 3
⊢ (𝐺 ∈ Grp →
(((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺) ↔ (((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺) ∧ ((cls‘𝐽)‘𝑆) ≠ ∅ ∧ ∀𝑥 ∈ ((cls‘𝐽)‘𝑆)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(-g‘𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆)))) |
79 | 34, 78 | syl 17 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺) ↔ (((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺) ∧ ((cls‘𝐽)‘𝑆) ≠ ∅ ∧ ∀𝑥 ∈ ((cls‘𝐽)‘𝑆)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(-g‘𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆)))) |
80 | 15, 23, 77, 79 | mpbir3and 1340 |
1
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺)) |