MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clssubg Structured version   Visualization version   GIF version

Theorem clssubg 23340
Description: The closure of a subgroup in a topological group is a subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
clssubg ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺))

Proof of Theorem clssubg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgntr.h . . . . . . 7 𝐽 = (TopOpen‘𝐺)
2 eqid 2736 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
31, 2tgptopon 23313 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
43adantr 481 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
5 topontop 22142 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
64, 5syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐽 ∈ Top)
72subgss 18829 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
87adantl 482 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
9 toponuni 22143 . . . . . 6 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
104, 9syl 17 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (Base‘𝐺) = 𝐽)
118, 10sseqtrd 3970 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 𝐽)
12 eqid 2736 . . . . 5 𝐽 = 𝐽
1312clsss3 22290 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
146, 11, 13syl2anc 584 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
1514, 10sseqtrrd 3971 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺))
1612sscls 22287 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
176, 11, 16syl2anc 584 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
18 eqid 2736 . . . . . 6 (0g𝐺) = (0g𝐺)
1918subg0cl 18836 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
2019adantl 482 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (0g𝐺) ∈ 𝑆)
2120ne0d 4279 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ≠ ∅)
22 ssn0 4344 . . 3 ((𝑆 ⊆ ((cls‘𝐽)‘𝑆) ∧ 𝑆 ≠ ∅) → ((cls‘𝐽)‘𝑆) ≠ ∅)
2317, 21, 22syl2anc 584 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ≠ ∅)
24 df-ov 7319 . . . 4 (𝑥(-g𝐺)𝑦) = ((-g𝐺)‘⟨𝑥, 𝑦⟩)
25 opelxpi 5644 . . . . . . 7 ((𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆)) → ⟨𝑥, 𝑦⟩ ∈ (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆)))
26 txcls 22835 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺))) ∧ (𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺))) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) = (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆)))
274, 4, 8, 8, 26syl22anc 836 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) = (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆)))
28 txtopon 22822 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺))) → (𝐽 ×t 𝐽) ∈ (TopOn‘((Base‘𝐺) × (Base‘𝐺))))
294, 4, 28syl2anc 584 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐽 ×t 𝐽) ∈ (TopOn‘((Base‘𝐺) × (Base‘𝐺))))
30 topontop 22142 . . . . . . . . . . . 12 ((𝐽 ×t 𝐽) ∈ (TopOn‘((Base‘𝐺) × (Base‘𝐺))) → (𝐽 ×t 𝐽) ∈ Top)
3129, 30syl 17 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐽 ×t 𝐽) ∈ Top)
32 cnvimass 6006 . . . . . . . . . . . . 13 ((-g𝐺) “ 𝑆) ⊆ dom (-g𝐺)
33 tgpgrp 23309 . . . . . . . . . . . . . . 15 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
3433adantr 481 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
35 eqid 2736 . . . . . . . . . . . . . . 15 (-g𝐺) = (-g𝐺)
362, 35grpsubf 18727 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
3734, 36syl 17 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
3832, 37fssdm 6657 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((-g𝐺) “ 𝑆) ⊆ ((Base‘𝐺) × (Base‘𝐺)))
39 toponuni 22143 . . . . . . . . . . . . 13 ((𝐽 ×t 𝐽) ∈ (TopOn‘((Base‘𝐺) × (Base‘𝐺))) → ((Base‘𝐺) × (Base‘𝐺)) = (𝐽 ×t 𝐽))
4029, 39syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((Base‘𝐺) × (Base‘𝐺)) = (𝐽 ×t 𝐽))
4138, 40sseqtrd 3970 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((-g𝐺) “ 𝑆) ⊆ (𝐽 ×t 𝐽))
4235subgsubcl 18839 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥(-g𝐺)𝑦) ∈ 𝑆)
43423expb 1119 . . . . . . . . . . . . . . 15 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(-g𝐺)𝑦) ∈ 𝑆)
4443ralrimivva 3193 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥𝑆𝑦𝑆 (𝑥(-g𝐺)𝑦) ∈ 𝑆)
45 fveq2 6811 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑥, 𝑦⟩ → ((-g𝐺)‘𝑧) = ((-g𝐺)‘⟨𝑥, 𝑦⟩))
4645, 24eqtr4di 2794 . . . . . . . . . . . . . . . 16 (𝑧 = ⟨𝑥, 𝑦⟩ → ((-g𝐺)‘𝑧) = (𝑥(-g𝐺)𝑦))
4746eleq1d 2821 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑥, 𝑦⟩ → (((-g𝐺)‘𝑧) ∈ 𝑆 ↔ (𝑥(-g𝐺)𝑦) ∈ 𝑆))
4847ralxp 5770 . . . . . . . . . . . . . 14 (∀𝑧 ∈ (𝑆 × 𝑆)((-g𝐺)‘𝑧) ∈ 𝑆 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(-g𝐺)𝑦) ∈ 𝑆)
4944, 48sylibr 233 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑧 ∈ (𝑆 × 𝑆)((-g𝐺)‘𝑧) ∈ 𝑆)
5049adantl 482 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑧 ∈ (𝑆 × 𝑆)((-g𝐺)‘𝑧) ∈ 𝑆)
5137ffund 6641 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → Fun (-g𝐺))
52 xpss12 5622 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑆 × 𝑆) ⊆ ((Base‘𝐺) × (Base‘𝐺)))
538, 8, 52syl2anc 584 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑆) ⊆ ((Base‘𝐺) × (Base‘𝐺)))
5437fdmd 6648 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → dom (-g𝐺) = ((Base‘𝐺) × (Base‘𝐺)))
5553, 54sseqtrrd 3971 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑆) ⊆ dom (-g𝐺))
56 funimass5 6971 . . . . . . . . . . . . 13 ((Fun (-g𝐺) ∧ (𝑆 × 𝑆) ⊆ dom (-g𝐺)) → ((𝑆 × 𝑆) ⊆ ((-g𝐺) “ 𝑆) ↔ ∀𝑧 ∈ (𝑆 × 𝑆)((-g𝐺)‘𝑧) ∈ 𝑆))
5751, 55, 56syl2anc 584 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((𝑆 × 𝑆) ⊆ ((-g𝐺) “ 𝑆) ↔ ∀𝑧 ∈ (𝑆 × 𝑆)((-g𝐺)‘𝑧) ∈ 𝑆))
5850, 57mpbird 256 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑆) ⊆ ((-g𝐺) “ 𝑆))
59 eqid 2736 . . . . . . . . . . . 12 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
6059clsss 22285 . . . . . . . . . . 11 (((𝐽 ×t 𝐽) ∈ Top ∧ ((-g𝐺) “ 𝑆) ⊆ (𝐽 ×t 𝐽) ∧ (𝑆 × 𝑆) ⊆ ((-g𝐺) “ 𝑆)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) ⊆ ((cls‘(𝐽 ×t 𝐽))‘((-g𝐺) “ 𝑆)))
6131, 41, 58, 60syl3anc 1370 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) ⊆ ((cls‘(𝐽 ×t 𝐽))‘((-g𝐺) “ 𝑆)))
621, 35tgpsubcn 23321 . . . . . . . . . . . 12 (𝐺 ∈ TopGrp → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
6362adantr 481 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
6412cncls2i 22501 . . . . . . . . . . 11 (((-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ 𝑆 𝐽) → ((cls‘(𝐽 ×t 𝐽))‘((-g𝐺) “ 𝑆)) ⊆ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
6563, 11, 64syl2anc 584 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘((-g𝐺) “ 𝑆)) ⊆ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
6661, 65sstrd 3940 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) ⊆ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
6727, 66eqsstrrd 3969 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆)) ⊆ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
6867sselda 3930 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ ⟨𝑥, 𝑦⟩ ∈ (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆))) → ⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
6925, 68sylan2 593 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → ⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
7033ad2antrr 723 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → 𝐺 ∈ Grp)
71 ffn 6637 . . . . . . 7 ((-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) → (-g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)))
72 elpreima 6974 . . . . . . 7 ((-g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)) → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)) ↔ (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ ((cls‘𝐽)‘𝑆))))
7370, 36, 71, 724syl 19 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)) ↔ (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ ((cls‘𝐽)‘𝑆))))
7469, 73mpbid 231 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ ((cls‘𝐽)‘𝑆)))
7574simprd 496 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ ((cls‘𝐽)‘𝑆))
7624, 75eqeltrid 2841 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → (𝑥(-g𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆))
7776ralrimivva 3193 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ ((cls‘𝐽)‘𝑆)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(-g𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆))
782, 35issubg4 18847 . . 3 (𝐺 ∈ Grp → (((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺) ↔ (((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺) ∧ ((cls‘𝐽)‘𝑆) ≠ ∅ ∧ ∀𝑥 ∈ ((cls‘𝐽)‘𝑆)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(-g𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆))))
7934, 78syl 17 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺) ↔ (((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺) ∧ ((cls‘𝐽)‘𝑆) ≠ ∅ ∧ ∀𝑥 ∈ ((cls‘𝐽)‘𝑆)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(-g𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆))))
8015, 23, 77, 79mpbir3and 1341 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wral 3061  wss 3896  c0 4266  cop 4576   cuni 4849   × cxp 5605  ccnv 5606  dom cdm 5607  cima 5610  Fun wfun 6459   Fn wfn 6460  wf 6461  cfv 6465  (class class class)co 7316  Basecbs 16986  TopOpenctopn 17206  0gc0g 17224  Grpcgrp 18650  -gcsg 18652  SubGrpcsubg 18822  Topctop 22122  TopOnctopon 22139  clsccl 22249   Cn ccn 22455   ×t ctx 22791  TopGrpctgp 23302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-er 8547  df-map 8666  df-en 8783  df-dom 8784  df-sdom 8785  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-nn 12053  df-2 12115  df-sets 16939  df-slot 16957  df-ndx 16969  df-base 16987  df-ress 17016  df-plusg 17049  df-0g 17226  df-topgen 17228  df-plusf 18399  df-mgm 18400  df-sgrp 18449  df-mnd 18460  df-grp 18653  df-minusg 18654  df-sbg 18655  df-subg 18825  df-top 22123  df-topon 22140  df-topsp 22162  df-bases 22176  df-cld 22250  df-ntr 22251  df-cls 22252  df-cn 22458  df-tx 22793  df-tmd 23303  df-tgp 23304
This theorem is referenced by:  clsnsg  23341  tgptsmscls  23381
  Copyright terms: Public domain W3C validator