Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clssubg Structured version   Visualization version   GIF version

Theorem clssubg 22717
 Description: The closure of a subgroup in a topological group is a subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
clssubg ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺))

Proof of Theorem clssubg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgntr.h . . . . . . 7 𝐽 = (TopOpen‘𝐺)
2 eqid 2801 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
31, 2tgptopon 22690 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
43adantr 484 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
5 topontop 21521 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
64, 5syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐽 ∈ Top)
72subgss 18275 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
87adantl 485 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
9 toponuni 21522 . . . . . 6 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
104, 9syl 17 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (Base‘𝐺) = 𝐽)
118, 10sseqtrd 3958 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 𝐽)
12 eqid 2801 . . . . 5 𝐽 = 𝐽
1312clsss3 21667 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
146, 11, 13syl2anc 587 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
1514, 10sseqtrrd 3959 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺))
1612sscls 21664 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
176, 11, 16syl2anc 587 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
18 eqid 2801 . . . . . 6 (0g𝐺) = (0g𝐺)
1918subg0cl 18282 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
2019adantl 485 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (0g𝐺) ∈ 𝑆)
2120ne0d 4254 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ≠ ∅)
22 ssn0 4311 . . 3 ((𝑆 ⊆ ((cls‘𝐽)‘𝑆) ∧ 𝑆 ≠ ∅) → ((cls‘𝐽)‘𝑆) ≠ ∅)
2317, 21, 22syl2anc 587 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ≠ ∅)
24 df-ov 7142 . . . 4 (𝑥(-g𝐺)𝑦) = ((-g𝐺)‘⟨𝑥, 𝑦⟩)
25 opelxpi 5560 . . . . . . 7 ((𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆)) → ⟨𝑥, 𝑦⟩ ∈ (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆)))
26 txcls 22212 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺))) ∧ (𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺))) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) = (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆)))
274, 4, 8, 8, 26syl22anc 837 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) = (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆)))
28 txtopon 22199 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺))) → (𝐽 ×t 𝐽) ∈ (TopOn‘((Base‘𝐺) × (Base‘𝐺))))
294, 4, 28syl2anc 587 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐽 ×t 𝐽) ∈ (TopOn‘((Base‘𝐺) × (Base‘𝐺))))
30 topontop 21521 . . . . . . . . . . . 12 ((𝐽 ×t 𝐽) ∈ (TopOn‘((Base‘𝐺) × (Base‘𝐺))) → (𝐽 ×t 𝐽) ∈ Top)
3129, 30syl 17 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐽 ×t 𝐽) ∈ Top)
32 cnvimass 5920 . . . . . . . . . . . . 13 ((-g𝐺) “ 𝑆) ⊆ dom (-g𝐺)
33 tgpgrp 22686 . . . . . . . . . . . . . . 15 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
3433adantr 484 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
35 eqid 2801 . . . . . . . . . . . . . . 15 (-g𝐺) = (-g𝐺)
362, 35grpsubf 18173 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
3734, 36syl 17 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
3832, 37fssdm 6508 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((-g𝐺) “ 𝑆) ⊆ ((Base‘𝐺) × (Base‘𝐺)))
39 toponuni 21522 . . . . . . . . . . . . 13 ((𝐽 ×t 𝐽) ∈ (TopOn‘((Base‘𝐺) × (Base‘𝐺))) → ((Base‘𝐺) × (Base‘𝐺)) = (𝐽 ×t 𝐽))
4029, 39syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((Base‘𝐺) × (Base‘𝐺)) = (𝐽 ×t 𝐽))
4138, 40sseqtrd 3958 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((-g𝐺) “ 𝑆) ⊆ (𝐽 ×t 𝐽))
4235subgsubcl 18285 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥(-g𝐺)𝑦) ∈ 𝑆)
43423expb 1117 . . . . . . . . . . . . . . 15 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(-g𝐺)𝑦) ∈ 𝑆)
4443ralrimivva 3159 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥𝑆𝑦𝑆 (𝑥(-g𝐺)𝑦) ∈ 𝑆)
45 fveq2 6649 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑥, 𝑦⟩ → ((-g𝐺)‘𝑧) = ((-g𝐺)‘⟨𝑥, 𝑦⟩))
4645, 24eqtr4di 2854 . . . . . . . . . . . . . . . 16 (𝑧 = ⟨𝑥, 𝑦⟩ → ((-g𝐺)‘𝑧) = (𝑥(-g𝐺)𝑦))
4746eleq1d 2877 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑥, 𝑦⟩ → (((-g𝐺)‘𝑧) ∈ 𝑆 ↔ (𝑥(-g𝐺)𝑦) ∈ 𝑆))
4847ralxp 5680 . . . . . . . . . . . . . 14 (∀𝑧 ∈ (𝑆 × 𝑆)((-g𝐺)‘𝑧) ∈ 𝑆 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(-g𝐺)𝑦) ∈ 𝑆)
4944, 48sylibr 237 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑧 ∈ (𝑆 × 𝑆)((-g𝐺)‘𝑧) ∈ 𝑆)
5049adantl 485 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑧 ∈ (𝑆 × 𝑆)((-g𝐺)‘𝑧) ∈ 𝑆)
5137ffund 6495 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → Fun (-g𝐺))
52 xpss12 5538 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑆 × 𝑆) ⊆ ((Base‘𝐺) × (Base‘𝐺)))
538, 8, 52syl2anc 587 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑆) ⊆ ((Base‘𝐺) × (Base‘𝐺)))
5437fdmd 6501 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → dom (-g𝐺) = ((Base‘𝐺) × (Base‘𝐺)))
5553, 54sseqtrrd 3959 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑆) ⊆ dom (-g𝐺))
56 funimass5 6806 . . . . . . . . . . . . 13 ((Fun (-g𝐺) ∧ (𝑆 × 𝑆) ⊆ dom (-g𝐺)) → ((𝑆 × 𝑆) ⊆ ((-g𝐺) “ 𝑆) ↔ ∀𝑧 ∈ (𝑆 × 𝑆)((-g𝐺)‘𝑧) ∈ 𝑆))
5751, 55, 56syl2anc 587 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((𝑆 × 𝑆) ⊆ ((-g𝐺) “ 𝑆) ↔ ∀𝑧 ∈ (𝑆 × 𝑆)((-g𝐺)‘𝑧) ∈ 𝑆))
5850, 57mpbird 260 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑆) ⊆ ((-g𝐺) “ 𝑆))
59 eqid 2801 . . . . . . . . . . . 12 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
6059clsss 21662 . . . . . . . . . . 11 (((𝐽 ×t 𝐽) ∈ Top ∧ ((-g𝐺) “ 𝑆) ⊆ (𝐽 ×t 𝐽) ∧ (𝑆 × 𝑆) ⊆ ((-g𝐺) “ 𝑆)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) ⊆ ((cls‘(𝐽 ×t 𝐽))‘((-g𝐺) “ 𝑆)))
6131, 41, 58, 60syl3anc 1368 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) ⊆ ((cls‘(𝐽 ×t 𝐽))‘((-g𝐺) “ 𝑆)))
621, 35tgpsubcn 22698 . . . . . . . . . . . 12 (𝐺 ∈ TopGrp → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
6362adantr 484 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
6412cncls2i 21878 . . . . . . . . . . 11 (((-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ 𝑆 𝐽) → ((cls‘(𝐽 ×t 𝐽))‘((-g𝐺) “ 𝑆)) ⊆ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
6563, 11, 64syl2anc 587 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘((-g𝐺) “ 𝑆)) ⊆ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
6661, 65sstrd 3928 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘(𝐽 ×t 𝐽))‘(𝑆 × 𝑆)) ⊆ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
6727, 66eqsstrrd 3957 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆)) ⊆ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
6867sselda 3918 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ ⟨𝑥, 𝑦⟩ ∈ (((cls‘𝐽)‘𝑆) × ((cls‘𝐽)‘𝑆))) → ⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
6925, 68sylan2 595 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → ⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)))
7033ad2antrr 725 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → 𝐺 ∈ Grp)
71 ffn 6491 . . . . . . 7 ((-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) → (-g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)))
72 elpreima 6809 . . . . . . 7 ((-g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)) → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)) ↔ (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ ((cls‘𝐽)‘𝑆))))
7370, 36, 71, 724syl 19 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ ((cls‘𝐽)‘𝑆)) ↔ (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ ((cls‘𝐽)‘𝑆))))
7469, 73mpbid 235 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ ((cls‘𝐽)‘𝑆)))
7574simprd 499 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ ((cls‘𝐽)‘𝑆))
7624, 75eqeltrid 2897 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((cls‘𝐽)‘𝑆))) → (𝑥(-g𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆))
7776ralrimivva 3159 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ ((cls‘𝐽)‘𝑆)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(-g𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆))
782, 35issubg4 18293 . . 3 (𝐺 ∈ Grp → (((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺) ↔ (((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺) ∧ ((cls‘𝐽)‘𝑆) ≠ ∅ ∧ ∀𝑥 ∈ ((cls‘𝐽)‘𝑆)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(-g𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆))))
7934, 78syl 17 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺) ↔ (((cls‘𝐽)‘𝑆) ⊆ (Base‘𝐺) ∧ ((cls‘𝐽)‘𝑆) ≠ ∅ ∧ ∀𝑥 ∈ ((cls‘𝐽)‘𝑆)∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(-g𝐺)𝑦) ∈ ((cls‘𝐽)‘𝑆))))
8015, 23, 77, 79mpbir3and 1339 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109   ⊆ wss 3884  ∅c0 4246  ⟨cop 4534  ∪ cuni 4803   × cxp 5521  ◡ccnv 5522  dom cdm 5523   “ cima 5526  Fun wfun 6322   Fn wfn 6323  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  Basecbs 16478  TopOpenctopn 16690  0gc0g 16708  Grpcgrp 18098  -gcsg 18100  SubGrpcsubg 18268  Topctop 21501  TopOnctopon 21518  clsccl 21626   Cn ccn 21832   ×t ctx 22168  TopGrpctgp 22679 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-topgen 16712  df-plusf 17846  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-cn 21835  df-tx 22170  df-tmd 22680  df-tgp 22681 This theorem is referenced by:  clsnsg  22718  tgptsmscls  22758
 Copyright terms: Public domain W3C validator