MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgntr Structured version   Visualization version   GIF version

Theorem subgntr 22858
Description: A subgroup of a topological group with nonempty interior is open. Alternatively, dual to clssubg 22860, the interior of a subgroup is either a subgroup, or empty. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
subgntr ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆𝐽)

Proof of Theorem subgntr
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ima 5538 . . . . . 6 ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆))
2 subgntr.h . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝐺)
3 eqid 2738 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
42, 3tgptopon 22833 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
543ad2ant1 1134 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
65adantr 484 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
7 topontop 21664 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
85, 7syl 17 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
98adantr 484 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐽 ∈ Top)
10 simpl2 1193 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
113subgss 18398 . . . . . . . . . . . 12 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1210, 11syl 17 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑆 ⊆ (Base‘𝐺))
13 toponuni 21665 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
146, 13syl 17 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (Base‘𝐺) = 𝐽)
1512, 14sseqtrd 3917 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑆 𝐽)
16 eqid 2738 . . . . . . . . . . 11 𝐽 = 𝐽
1716ntropn 21800 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
189, 15, 17syl2anc 587 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
19 toponss 21678 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((int‘𝐽)‘𝑆) ⊆ (Base‘𝐺))
206, 18, 19syl2anc 587 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((int‘𝐽)‘𝑆) ⊆ (Base‘𝐺))
2120resmptd 5882 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆)) = (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
2221rneqd 5781 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
231, 22syl5eq 2785 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
24 simpl1 1192 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐺 ∈ TopGrp)
25 simpr 488 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑥𝑆)
2616ntrss2 21808 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
279, 15, 26syl2anc 587 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
28 simpl3 1194 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ ((int‘𝐽)‘𝑆))
2927, 28sseldd 3878 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐴𝑆)
30 eqid 2738 . . . . . . . . . 10 (-g𝐺) = (-g𝐺)
3130subgsubcl 18408 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝐴𝑆) → (𝑥(-g𝐺)𝐴) ∈ 𝑆)
3210, 25, 29, 31syl3anc 1372 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑥(-g𝐺)𝐴) ∈ 𝑆)
3312, 32sseldd 3878 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑥(-g𝐺)𝐴) ∈ (Base‘𝐺))
34 eqid 2738 . . . . . . . 8 (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) = (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦))
35 eqid 2738 . . . . . . . 8 (+g𝐺) = (+g𝐺)
3634, 3, 35, 2tgplacthmeo 22854 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ (𝑥(-g𝐺)𝐴) ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
3724, 33, 36syl2anc 587 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
38 hmeoima 22516 . . . . . 6 (((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽) ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) ∈ 𝐽)
3937, 18, 38syl2anc 587 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) ∈ 𝐽)
4023, 39eqeltrrd 2834 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ 𝐽)
41 tgpgrp 22829 . . . . . . 7 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
4224, 41syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐺 ∈ Grp)
43113ad2ant2 1135 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ⊆ (Base‘𝐺))
4443sselda 3877 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐺))
4520, 28sseldd 3878 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ (Base‘𝐺))
463, 35, 30grpnpcan 18309 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝐴 ∈ (Base‘𝐺)) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) = 𝑥)
4742, 44, 45, 46syl3anc 1372 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) = 𝑥)
48 ovex 7203 . . . . . 6 ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ V
49 eqid 2738 . . . . . . 7 (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) = (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦))
50 oveq2 7178 . . . . . . 7 (𝑦 = 𝐴 → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦) = ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴))
5149, 50elrnmpt1s 5800 . . . . . 6 ((𝐴 ∈ ((int‘𝐽)‘𝑆) ∧ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ V) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
5228, 48, 51sylancl 589 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
5347, 52eqeltrrd 2834 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
5410adantr 484 . . . . . . 7 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ∈ (SubGrp‘𝐺))
5532adantr 484 . . . . . . 7 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → (𝑥(-g𝐺)𝐴) ∈ 𝑆)
5627sselda 3877 . . . . . . 7 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → 𝑦𝑆)
5735subgcl 18407 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥(-g𝐺)𝐴) ∈ 𝑆𝑦𝑆) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦) ∈ 𝑆)
5854, 55, 56, 57syl3anc 1372 . . . . . 6 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦) ∈ 𝑆)
5958fmpttd 6889 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)):((int‘𝐽)‘𝑆)⟶𝑆)
6059frnd 6512 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆)
61 eleq2 2821 . . . . . 6 (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) → (𝑥𝑢𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦))))
62 sseq1 3902 . . . . . 6 (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) → (𝑢𝑆 ↔ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆))
6361, 62anbi12d 634 . . . . 5 (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) → ((𝑥𝑢𝑢𝑆) ↔ (𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∧ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆)))
6463rspcev 3526 . . . 4 ((ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ 𝐽 ∧ (𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∧ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆)) → ∃𝑢𝐽 (𝑥𝑢𝑢𝑆))
6540, 53, 60, 64syl12anc 836 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ∃𝑢𝐽 (𝑥𝑢𝑢𝑆))
6665ralrimiva 3096 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → ∀𝑥𝑆𝑢𝐽 (𝑥𝑢𝑢𝑆))
67 eltop2 21726 . . 3 (𝐽 ∈ Top → (𝑆𝐽 ↔ ∀𝑥𝑆𝑢𝐽 (𝑥𝑢𝑢𝑆)))
688, 67syl 17 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → (𝑆𝐽 ↔ ∀𝑥𝑆𝑢𝐽 (𝑥𝑢𝑢𝑆)))
6966, 68mpbird 260 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3053  wrex 3054  Vcvv 3398  wss 3843   cuni 4796  cmpt 5110  ran crn 5526  cres 5527  cima 5528  cfv 6339  (class class class)co 7170  Basecbs 16586  +gcplusg 16668  TopOpenctopn 16798  Grpcgrp 18219  -gcsg 18221  SubGrpcsubg 18391  Topctop 21644  TopOnctopon 21661  intcnt 21768  Homeochmeo 22504  TopGrpctgp 22822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-0g 16818  df-topgen 16820  df-plusf 17967  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-grp 18222  df-minusg 18223  df-sbg 18224  df-subg 18394  df-top 21645  df-topon 21662  df-topsp 21684  df-bases 21697  df-ntr 21771  df-cn 21978  df-cnp 21979  df-tx 22313  df-hmeo 22506  df-tmd 22823  df-tgp 22824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator