MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgntr Structured version   Visualization version   GIF version

Theorem subgntr 24136
Description: A subgroup of a topological group with nonempty interior is open. Alternatively, dual to clssubg 24138, the interior of a subgroup is either a subgroup, or empty. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
subgntr ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆𝐽)

Proof of Theorem subgntr
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ima 5713 . . . . . 6 ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆))
2 subgntr.h . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝐺)
3 eqid 2740 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
42, 3tgptopon 24111 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
543ad2ant1 1133 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
65adantr 480 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
7 topontop 22940 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
85, 7syl 17 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
98adantr 480 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐽 ∈ Top)
10 simpl2 1192 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
113subgss 19167 . . . . . . . . . . . 12 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1210, 11syl 17 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑆 ⊆ (Base‘𝐺))
13 toponuni 22941 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
146, 13syl 17 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (Base‘𝐺) = 𝐽)
1512, 14sseqtrd 4049 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑆 𝐽)
16 eqid 2740 . . . . . . . . . . 11 𝐽 = 𝐽
1716ntropn 23078 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
189, 15, 17syl2anc 583 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
19 toponss 22954 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((int‘𝐽)‘𝑆) ⊆ (Base‘𝐺))
206, 18, 19syl2anc 583 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((int‘𝐽)‘𝑆) ⊆ (Base‘𝐺))
2120resmptd 6069 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆)) = (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
2221rneqd 5963 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
231, 22eqtrid 2792 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
24 simpl1 1191 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐺 ∈ TopGrp)
25 simpr 484 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑥𝑆)
2616ntrss2 23086 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
279, 15, 26syl2anc 583 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
28 simpl3 1193 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ ((int‘𝐽)‘𝑆))
2927, 28sseldd 4009 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐴𝑆)
30 eqid 2740 . . . . . . . . . 10 (-g𝐺) = (-g𝐺)
3130subgsubcl 19177 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝐴𝑆) → (𝑥(-g𝐺)𝐴) ∈ 𝑆)
3210, 25, 29, 31syl3anc 1371 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑥(-g𝐺)𝐴) ∈ 𝑆)
3312, 32sseldd 4009 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑥(-g𝐺)𝐴) ∈ (Base‘𝐺))
34 eqid 2740 . . . . . . . 8 (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) = (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦))
35 eqid 2740 . . . . . . . 8 (+g𝐺) = (+g𝐺)
3634, 3, 35, 2tgplacthmeo 24132 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ (𝑥(-g𝐺)𝐴) ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
3724, 33, 36syl2anc 583 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
38 hmeoima 23794 . . . . . 6 (((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽) ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) ∈ 𝐽)
3937, 18, 38syl2anc 583 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) ∈ 𝐽)
4023, 39eqeltrrd 2845 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ 𝐽)
41 tgpgrp 24107 . . . . . . 7 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
4224, 41syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐺 ∈ Grp)
43113ad2ant2 1134 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ⊆ (Base‘𝐺))
4443sselda 4008 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐺))
4520, 28sseldd 4009 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ (Base‘𝐺))
463, 35, 30grpnpcan 19072 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝐴 ∈ (Base‘𝐺)) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) = 𝑥)
4742, 44, 45, 46syl3anc 1371 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) = 𝑥)
48 ovex 7481 . . . . . 6 ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ V
49 eqid 2740 . . . . . . 7 (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) = (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦))
50 oveq2 7456 . . . . . . 7 (𝑦 = 𝐴 → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦) = ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴))
5149, 50elrnmpt1s 5982 . . . . . 6 ((𝐴 ∈ ((int‘𝐽)‘𝑆) ∧ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ V) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
5228, 48, 51sylancl 585 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
5347, 52eqeltrrd 2845 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
5410adantr 480 . . . . . . 7 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ∈ (SubGrp‘𝐺))
5532adantr 480 . . . . . . 7 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → (𝑥(-g𝐺)𝐴) ∈ 𝑆)
5627sselda 4008 . . . . . . 7 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → 𝑦𝑆)
5735subgcl 19176 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥(-g𝐺)𝐴) ∈ 𝑆𝑦𝑆) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦) ∈ 𝑆)
5854, 55, 56, 57syl3anc 1371 . . . . . 6 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦) ∈ 𝑆)
5958fmpttd 7149 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)):((int‘𝐽)‘𝑆)⟶𝑆)
6059frnd 6755 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆)
61 eleq2 2833 . . . . . 6 (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) → (𝑥𝑢𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦))))
62 sseq1 4034 . . . . . 6 (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) → (𝑢𝑆 ↔ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆))
6361, 62anbi12d 631 . . . . 5 (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) → ((𝑥𝑢𝑢𝑆) ↔ (𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∧ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆)))
6463rspcev 3635 . . . 4 ((ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ 𝐽 ∧ (𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∧ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆)) → ∃𝑢𝐽 (𝑥𝑢𝑢𝑆))
6540, 53, 60, 64syl12anc 836 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ∃𝑢𝐽 (𝑥𝑢𝑢𝑆))
6665ralrimiva 3152 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → ∀𝑥𝑆𝑢𝐽 (𝑥𝑢𝑢𝑆))
67 eltop2 23003 . . 3 (𝐽 ∈ Top → (𝑆𝐽 ↔ ∀𝑥𝑆𝑢𝐽 (𝑥𝑢𝑢𝑆)))
688, 67syl 17 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → (𝑆𝐽 ↔ ∀𝑥𝑆𝑢𝐽 (𝑥𝑢𝑢𝑆)))
6966, 68mpbird 257 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   cuni 4931  cmpt 5249  ran crn 5701  cres 5702  cima 5703  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  TopOpenctopn 17481  Grpcgrp 18973  -gcsg 18975  SubGrpcsubg 19160  Topctop 22920  TopOnctopon 22937  intcnt 23046  Homeochmeo 23782  TopGrpctgp 24100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-topgen 17503  df-plusf 18677  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-ntr 23049  df-cn 23256  df-cnp 23257  df-tx 23591  df-hmeo 23784  df-tmd 24101  df-tgp 24102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator