MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgntr Structured version   Visualization version   GIF version

Theorem subgntr 24023
Description: A subgroup of a topological group with nonempty interior is open. Alternatively, dual to clssubg 24025, the interior of a subgroup is either a subgroup, or empty. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
subgntr ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆𝐽)

Proof of Theorem subgntr
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ima 5632 . . . . . 6 ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆))
2 subgntr.h . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝐺)
3 eqid 2733 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
42, 3tgptopon 23998 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
543ad2ant1 1133 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
65adantr 480 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
7 topontop 22829 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
85, 7syl 17 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
98adantr 480 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐽 ∈ Top)
10 simpl2 1193 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
113subgss 19042 . . . . . . . . . . . 12 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1210, 11syl 17 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑆 ⊆ (Base‘𝐺))
13 toponuni 22830 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
146, 13syl 17 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (Base‘𝐺) = 𝐽)
1512, 14sseqtrd 3967 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑆 𝐽)
16 eqid 2733 . . . . . . . . . . 11 𝐽 = 𝐽
1716ntropn 22965 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
189, 15, 17syl2anc 584 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
19 toponss 22843 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((int‘𝐽)‘𝑆) ⊆ (Base‘𝐺))
206, 18, 19syl2anc 584 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((int‘𝐽)‘𝑆) ⊆ (Base‘𝐺))
2120resmptd 5993 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆)) = (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
2221rneqd 5882 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
231, 22eqtrid 2780 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
24 simpl1 1192 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐺 ∈ TopGrp)
25 simpr 484 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑥𝑆)
2616ntrss2 22973 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
279, 15, 26syl2anc 584 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
28 simpl3 1194 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ ((int‘𝐽)‘𝑆))
2927, 28sseldd 3931 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐴𝑆)
30 eqid 2733 . . . . . . . . . 10 (-g𝐺) = (-g𝐺)
3130subgsubcl 19052 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝐴𝑆) → (𝑥(-g𝐺)𝐴) ∈ 𝑆)
3210, 25, 29, 31syl3anc 1373 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑥(-g𝐺)𝐴) ∈ 𝑆)
3312, 32sseldd 3931 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑥(-g𝐺)𝐴) ∈ (Base‘𝐺))
34 eqid 2733 . . . . . . . 8 (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) = (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦))
35 eqid 2733 . . . . . . . 8 (+g𝐺) = (+g𝐺)
3634, 3, 35, 2tgplacthmeo 24019 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ (𝑥(-g𝐺)𝐴) ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
3724, 33, 36syl2anc 584 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
38 hmeoima 23681 . . . . . 6 (((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽) ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) ∈ 𝐽)
3937, 18, 38syl2anc 584 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) ∈ 𝐽)
4023, 39eqeltrrd 2834 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ 𝐽)
41 tgpgrp 23994 . . . . . . 7 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
4224, 41syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐺 ∈ Grp)
43113ad2ant2 1134 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ⊆ (Base‘𝐺))
4443sselda 3930 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐺))
4520, 28sseldd 3931 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ (Base‘𝐺))
463, 35, 30grpnpcan 18947 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝐴 ∈ (Base‘𝐺)) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) = 𝑥)
4742, 44, 45, 46syl3anc 1373 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) = 𝑥)
48 ovex 7385 . . . . . 6 ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ V
49 eqid 2733 . . . . . . 7 (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) = (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦))
50 oveq2 7360 . . . . . . 7 (𝑦 = 𝐴 → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦) = ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴))
5149, 50elrnmpt1s 5903 . . . . . 6 ((𝐴 ∈ ((int‘𝐽)‘𝑆) ∧ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ V) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
5228, 48, 51sylancl 586 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
5347, 52eqeltrrd 2834 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
5410adantr 480 . . . . . . 7 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ∈ (SubGrp‘𝐺))
5532adantr 480 . . . . . . 7 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → (𝑥(-g𝐺)𝐴) ∈ 𝑆)
5627sselda 3930 . . . . . . 7 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → 𝑦𝑆)
5735subgcl 19051 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥(-g𝐺)𝐴) ∈ 𝑆𝑦𝑆) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦) ∈ 𝑆)
5854, 55, 56, 57syl3anc 1373 . . . . . 6 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦) ∈ 𝑆)
5958fmpttd 7054 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)):((int‘𝐽)‘𝑆)⟶𝑆)
6059frnd 6664 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆)
61 eleq2 2822 . . . . . 6 (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) → (𝑥𝑢𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦))))
62 sseq1 3956 . . . . . 6 (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) → (𝑢𝑆 ↔ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆))
6361, 62anbi12d 632 . . . . 5 (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) → ((𝑥𝑢𝑢𝑆) ↔ (𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∧ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆)))
6463rspcev 3573 . . . 4 ((ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ 𝐽 ∧ (𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∧ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆)) → ∃𝑢𝐽 (𝑥𝑢𝑢𝑆))
6540, 53, 60, 64syl12anc 836 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ∃𝑢𝐽 (𝑥𝑢𝑢𝑆))
6665ralrimiva 3125 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → ∀𝑥𝑆𝑢𝐽 (𝑥𝑢𝑢𝑆))
67 eltop2 22891 . . 3 (𝐽 ∈ Top → (𝑆𝐽 ↔ ∀𝑥𝑆𝑢𝐽 (𝑥𝑢𝑢𝑆)))
688, 67syl 17 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → (𝑆𝐽 ↔ ∀𝑥𝑆𝑢𝐽 (𝑥𝑢𝑢𝑆)))
6966, 68mpbird 257 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  wss 3898   cuni 4858  cmpt 5174  ran crn 5620  cres 5621  cima 5622  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  TopOpenctopn 17327  Grpcgrp 18848  -gcsg 18850  SubGrpcsubg 19035  Topctop 22809  TopOnctopon 22826  intcnt 22933  Homeochmeo 23669  TopGrpctgp 23987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-topgen 17349  df-plusf 18549  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-ntr 22936  df-cn 23143  df-cnp 23144  df-tx 23478  df-hmeo 23671  df-tmd 23988  df-tgp 23989
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator