Step | Hyp | Ref
| Expression |
1 | | df-ima 5593 |
. . . . . 6
⊢ ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆)) |
2 | | subgntr.h |
. . . . . . . . . . . 12
⊢ 𝐽 = (TopOpen‘𝐺) |
3 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝐺) =
(Base‘𝐺) |
4 | 2, 3 | tgptopon 23141 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈
(TopOn‘(Base‘𝐺))) |
5 | 4 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
6 | 5 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
7 | | topontop 21970 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top) |
8 | 5, 7 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝐽 ∈ Top) |
9 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐽 ∈ Top) |
10 | | simpl2 1190 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
11 | 3 | subgss 18671 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
12 | 10, 11 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
13 | | toponuni 21971 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) |
14 | 6, 13 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (Base‘𝐺) = ∪ 𝐽) |
15 | 12, 14 | sseqtrd 3957 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ ∪ 𝐽) |
16 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
17 | 16 | ntropn 22108 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑆) ∈ 𝐽) |
18 | 9, 15, 17 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
19 | | toponss 21984 |
. . . . . . . . 9
⊢ ((𝐽 ∈
(TopOn‘(Base‘𝐺)) ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((int‘𝐽)‘𝑆) ⊆ (Base‘𝐺)) |
20 | 6, 18, 19 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((int‘𝐽)‘𝑆) ⊆ (Base‘𝐺)) |
21 | 20 | resmptd 5937 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆)) = (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦))) |
22 | 21 | rneqd 5836 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦))) |
23 | 1, 22 | eqtrid 2790 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦))) |
24 | | simpl1 1189 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐺 ∈ TopGrp) |
25 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
26 | 16 | ntrss2 22116 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
27 | 9, 15, 26 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
28 | | simpl3 1191 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ((int‘𝐽)‘𝑆)) |
29 | 27, 28 | sseldd 3918 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑆) |
30 | | eqid 2738 |
. . . . . . . . . 10
⊢
(-g‘𝐺) = (-g‘𝐺) |
31 | 30 | subgsubcl 18681 |
. . . . . . . . 9
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝑥(-g‘𝐺)𝐴) ∈ 𝑆) |
32 | 10, 25, 29, 31 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝑥(-g‘𝐺)𝐴) ∈ 𝑆) |
33 | 12, 32 | sseldd 3918 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝑥(-g‘𝐺)𝐴) ∈ (Base‘𝐺)) |
34 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) = (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) |
35 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
36 | 34, 3, 35, 2 | tgplacthmeo 23162 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ (𝑥(-g‘𝐺)𝐴) ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ∈ (𝐽Homeo𝐽)) |
37 | 24, 33, 36 | syl2anc 583 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ∈ (𝐽Homeo𝐽)) |
38 | | hmeoima 22824 |
. . . . . 6
⊢ (((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ∈ (𝐽Homeo𝐽) ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) ∈ 𝐽) |
39 | 37, 18, 38 | syl2anc 583 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) ∈ 𝐽) |
40 | 23, 39 | eqeltrrd 2840 |
. . . 4
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ∈ 𝐽) |
41 | | tgpgrp 23137 |
. . . . . . 7
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
42 | 24, 41 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐺 ∈ Grp) |
43 | 11 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ⊆ (Base‘𝐺)) |
44 | 43 | sselda 3917 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝐺)) |
45 | 20, 28 | sseldd 3918 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ (Base‘𝐺)) |
46 | 3, 35, 30 | grpnpcan 18582 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝐴 ∈ (Base‘𝐺)) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝐴) = 𝑥) |
47 | 42, 44, 45, 46 | syl3anc 1369 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝐴) = 𝑥) |
48 | | ovex 7288 |
. . . . . 6
⊢ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝐴) ∈ V |
49 | | eqid 2738 |
. . . . . . 7
⊢ (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) = (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) |
50 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦) = ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝐴)) |
51 | 49, 50 | elrnmpt1s 5855 |
. . . . . 6
⊢ ((𝐴 ∈ ((int‘𝐽)‘𝑆) ∧ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝐴) ∈ V) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝐴) ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦))) |
52 | 28, 48, 51 | sylancl 585 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝐴) ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦))) |
53 | 47, 52 | eqeltrrd 2840 |
. . . 4
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦))) |
54 | 10 | adantr 480 |
. . . . . . 7
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ∈ (SubGrp‘𝐺)) |
55 | 32 | adantr 480 |
. . . . . . 7
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → (𝑥(-g‘𝐺)𝐴) ∈ 𝑆) |
56 | 27 | sselda 3917 |
. . . . . . 7
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → 𝑦 ∈ 𝑆) |
57 | 35 | subgcl 18680 |
. . . . . . 7
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥(-g‘𝐺)𝐴) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦) ∈ 𝑆) |
58 | 54, 55, 56, 57 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦) ∈ 𝑆) |
59 | 58 | fmpttd 6971 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)):((int‘𝐽)‘𝑆)⟶𝑆) |
60 | 59 | frnd 6592 |
. . . 4
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ⊆ 𝑆) |
61 | | eleq2 2827 |
. . . . . 6
⊢ (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)))) |
62 | | sseq1 3942 |
. . . . . 6
⊢ (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) → (𝑢 ⊆ 𝑆 ↔ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ⊆ 𝑆)) |
63 | 61, 62 | anbi12d 630 |
. . . . 5
⊢ (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) → ((𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆) ↔ (𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ∧ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ⊆ 𝑆))) |
64 | 63 | rspcev 3552 |
. . . 4
⊢ ((ran
(𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ∈ 𝐽 ∧ (𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ∧ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ⊆ 𝑆)) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆)) |
65 | 40, 53, 60, 64 | syl12anc 833 |
. . 3
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆)) |
66 | 65 | ralrimiva 3107 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → ∀𝑥 ∈ 𝑆 ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆)) |
67 | | eltop2 22033 |
. . 3
⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝑆 ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆))) |
68 | 8, 67 | syl 17 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → (𝑆 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝑆 ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆))) |
69 | 66, 68 | mpbird 256 |
1
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ∈ 𝐽) |