MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgntr Structured version   Visualization version   GIF version

Theorem subgntr 23258
Description: A subgroup of a topological group with nonempty interior is open. Alternatively, dual to clssubg 23260, the interior of a subgroup is either a subgroup, or empty. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
subgntr ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆𝐽)

Proof of Theorem subgntr
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ima 5602 . . . . . 6 ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆))
2 subgntr.h . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝐺)
3 eqid 2738 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
42, 3tgptopon 23233 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
543ad2ant1 1132 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
65adantr 481 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
7 topontop 22062 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
85, 7syl 17 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
98adantr 481 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐽 ∈ Top)
10 simpl2 1191 . . . . . . . . . . . 12 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
113subgss 18756 . . . . . . . . . . . 12 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1210, 11syl 17 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑆 ⊆ (Base‘𝐺))
13 toponuni 22063 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
146, 13syl 17 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (Base‘𝐺) = 𝐽)
1512, 14sseqtrd 3961 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑆 𝐽)
16 eqid 2738 . . . . . . . . . . 11 𝐽 = 𝐽
1716ntropn 22200 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
189, 15, 17syl2anc 584 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
19 toponss 22076 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((int‘𝐽)‘𝑆) ⊆ (Base‘𝐺))
206, 18, 19syl2anc 584 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((int‘𝐽)‘𝑆) ⊆ (Base‘𝐺))
2120resmptd 5948 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆)) = (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
2221rneqd 5847 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
231, 22eqtrid 2790 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
24 simpl1 1190 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐺 ∈ TopGrp)
25 simpr 485 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑥𝑆)
2616ntrss2 22208 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
279, 15, 26syl2anc 584 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
28 simpl3 1192 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ ((int‘𝐽)‘𝑆))
2927, 28sseldd 3922 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐴𝑆)
30 eqid 2738 . . . . . . . . . 10 (-g𝐺) = (-g𝐺)
3130subgsubcl 18766 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝐴𝑆) → (𝑥(-g𝐺)𝐴) ∈ 𝑆)
3210, 25, 29, 31syl3anc 1370 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑥(-g𝐺)𝐴) ∈ 𝑆)
3312, 32sseldd 3922 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑥(-g𝐺)𝐴) ∈ (Base‘𝐺))
34 eqid 2738 . . . . . . . 8 (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) = (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦))
35 eqid 2738 . . . . . . . 8 (+g𝐺) = (+g𝐺)
3634, 3, 35, 2tgplacthmeo 23254 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ (𝑥(-g𝐺)𝐴) ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
3724, 33, 36syl2anc 584 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
38 hmeoima 22916 . . . . . 6 (((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽) ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) ∈ 𝐽)
3937, 18, 38syl2anc 584 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) ∈ 𝐽)
4023, 39eqeltrrd 2840 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ 𝐽)
41 tgpgrp 23229 . . . . . . 7 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
4224, 41syl 17 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐺 ∈ Grp)
43113ad2ant2 1133 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ⊆ (Base‘𝐺))
4443sselda 3921 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐺))
4520, 28sseldd 3922 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ (Base‘𝐺))
463, 35, 30grpnpcan 18667 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝐴 ∈ (Base‘𝐺)) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) = 𝑥)
4742, 44, 45, 46syl3anc 1370 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) = 𝑥)
48 ovex 7308 . . . . . 6 ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ V
49 eqid 2738 . . . . . . 7 (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) = (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦))
50 oveq2 7283 . . . . . . 7 (𝑦 = 𝐴 → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦) = ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴))
5149, 50elrnmpt1s 5866 . . . . . 6 ((𝐴 ∈ ((int‘𝐽)‘𝑆) ∧ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ V) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
5228, 48, 51sylancl 586 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝐴) ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
5347, 52eqeltrrd 2840 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → 𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)))
5410adantr 481 . . . . . . 7 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ∈ (SubGrp‘𝐺))
5532adantr 481 . . . . . . 7 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → (𝑥(-g𝐺)𝐴) ∈ 𝑆)
5627sselda 3921 . . . . . . 7 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → 𝑦𝑆)
5735subgcl 18765 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥(-g𝐺)𝐴) ∈ 𝑆𝑦𝑆) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦) ∈ 𝑆)
5854, 55, 56, 57syl3anc 1370 . . . . . 6 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦) ∈ 𝑆)
5958fmpttd 6989 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)):((int‘𝐽)‘𝑆)⟶𝑆)
6059frnd 6608 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆)
61 eleq2 2827 . . . . . 6 (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) → (𝑥𝑢𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦))))
62 sseq1 3946 . . . . . 6 (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) → (𝑢𝑆 ↔ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆))
6361, 62anbi12d 631 . . . . 5 (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) → ((𝑥𝑢𝑢𝑆) ↔ (𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∧ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆)))
6463rspcev 3561 . . . 4 ((ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∈ 𝐽 ∧ (𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ∧ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g𝐺)𝐴)(+g𝐺)𝑦)) ⊆ 𝑆)) → ∃𝑢𝐽 (𝑥𝑢𝑢𝑆))
6540, 53, 60, 64syl12anc 834 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥𝑆) → ∃𝑢𝐽 (𝑥𝑢𝑢𝑆))
6665ralrimiva 3103 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → ∀𝑥𝑆𝑢𝐽 (𝑥𝑢𝑢𝑆))
67 eltop2 22125 . . 3 (𝐽 ∈ Top → (𝑆𝐽 ↔ ∀𝑥𝑆𝑢𝐽 (𝑥𝑢𝑢𝑆)))
688, 67syl 17 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → (𝑆𝐽 ↔ ∀𝑥𝑆𝑢𝐽 (𝑥𝑢𝑢𝑆)))
6966, 68mpbird 256 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887   cuni 4839  cmpt 5157  ran crn 5590  cres 5591  cima 5592  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  TopOpenctopn 17132  Grpcgrp 18577  -gcsg 18579  SubGrpcsubg 18749  Topctop 22042  TopOnctopon 22059  intcnt 22168  Homeochmeo 22904  TopGrpctgp 23222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-topgen 17154  df-plusf 18325  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-ntr 22171  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906  df-tmd 23223  df-tgp 23224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator