| Step | Hyp | Ref
| Expression |
| 1 | | df-ima 5698 |
. . . . . 6
⊢ ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) = ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆)) |
| 2 | | subgntr.h |
. . . . . . . . . . . 12
⊢ 𝐽 = (TopOpen‘𝐺) |
| 3 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 4 | 2, 3 | tgptopon 24090 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈
(TopOn‘(Base‘𝐺))) |
| 5 | 4 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 6 | 5 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 7 | | topontop 22919 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top) |
| 8 | 5, 7 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝐽 ∈ Top) |
| 9 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐽 ∈ Top) |
| 10 | | simpl2 1193 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 11 | 3 | subgss 19145 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 12 | 10, 11 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
| 13 | | toponuni 22920 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) |
| 14 | 6, 13 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (Base‘𝐺) = ∪ 𝐽) |
| 15 | 12, 14 | sseqtrd 4020 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ ∪ 𝐽) |
| 16 | | eqid 2737 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 17 | 16 | ntropn 23057 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑆) ∈ 𝐽) |
| 18 | 9, 15, 17 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
| 19 | | toponss 22933 |
. . . . . . . . 9
⊢ ((𝐽 ∈
(TopOn‘(Base‘𝐺)) ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((int‘𝐽)‘𝑆) ⊆ (Base‘𝐺)) |
| 20 | 6, 18, 19 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((int‘𝐽)‘𝑆) ⊆ (Base‘𝐺)) |
| 21 | 20 | resmptd 6058 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆)) = (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦))) |
| 22 | 21 | rneqd 5949 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ran ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ↾ ((int‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦))) |
| 23 | 1, 22 | eqtrid 2789 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦))) |
| 24 | | simpl1 1192 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐺 ∈ TopGrp) |
| 25 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 26 | 16 | ntrss2 23065 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
| 27 | 9, 15, 26 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
| 28 | | simpl3 1194 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ((int‘𝐽)‘𝑆)) |
| 29 | 27, 28 | sseldd 3984 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑆) |
| 30 | | eqid 2737 |
. . . . . . . . . 10
⊢
(-g‘𝐺) = (-g‘𝐺) |
| 31 | 30 | subgsubcl 19155 |
. . . . . . . . 9
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝑥(-g‘𝐺)𝐴) ∈ 𝑆) |
| 32 | 10, 25, 29, 31 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝑥(-g‘𝐺)𝐴) ∈ 𝑆) |
| 33 | 12, 32 | sseldd 3984 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝑥(-g‘𝐺)𝐴) ∈ (Base‘𝐺)) |
| 34 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) = (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) |
| 35 | | eqid 2737 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 36 | 34, 3, 35, 2 | tgplacthmeo 24111 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ (𝑥(-g‘𝐺)𝐴) ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ∈ (𝐽Homeo𝐽)) |
| 37 | 24, 33, 36 | syl2anc 584 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ∈ (𝐽Homeo𝐽)) |
| 38 | | hmeoima 23773 |
. . . . . 6
⊢ (((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ∈ (𝐽Homeo𝐽) ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) ∈ 𝐽) |
| 39 | 37, 18, 38 | syl2anc 584 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((𝑦 ∈ (Base‘𝐺) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) “ ((int‘𝐽)‘𝑆)) ∈ 𝐽) |
| 40 | 23, 39 | eqeltrrd 2842 |
. . . 4
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ∈ 𝐽) |
| 41 | | tgpgrp 24086 |
. . . . . . 7
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| 42 | 24, 41 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 43 | 11 | 3ad2ant2 1135 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ⊆ (Base‘𝐺)) |
| 44 | 43 | sselda 3983 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝐺)) |
| 45 | 20, 28 | sseldd 3984 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ (Base‘𝐺)) |
| 46 | 3, 35, 30 | grpnpcan 19050 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝐴 ∈ (Base‘𝐺)) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝐴) = 𝑥) |
| 47 | 42, 44, 45, 46 | syl3anc 1373 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝐴) = 𝑥) |
| 48 | | ovex 7464 |
. . . . . 6
⊢ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝐴) ∈ V |
| 49 | | eqid 2737 |
. . . . . . 7
⊢ (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) = (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) |
| 50 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦) = ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝐴)) |
| 51 | 49, 50 | elrnmpt1s 5970 |
. . . . . 6
⊢ ((𝐴 ∈ ((int‘𝐽)‘𝑆) ∧ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝐴) ∈ V) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝐴) ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦))) |
| 52 | 28, 48, 51 | sylancl 586 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝐴) ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦))) |
| 53 | 47, 52 | eqeltrrd 2842 |
. . . 4
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦))) |
| 54 | 10 | adantr 480 |
. . . . . . 7
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 55 | 32 | adantr 480 |
. . . . . . 7
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → (𝑥(-g‘𝐺)𝐴) ∈ 𝑆) |
| 56 | 27 | sselda 3983 |
. . . . . . 7
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → 𝑦 ∈ 𝑆) |
| 57 | 35 | subgcl 19154 |
. . . . . . 7
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥(-g‘𝐺)𝐴) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦) ∈ 𝑆) |
| 58 | 54, 55, 56, 57 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ ((int‘𝐽)‘𝑆)) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦) ∈ 𝑆) |
| 59 | 58 | fmpttd 7135 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)):((int‘𝐽)‘𝑆)⟶𝑆) |
| 60 | 59 | frnd 6744 |
. . . 4
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ⊆ 𝑆) |
| 61 | | eleq2 2830 |
. . . . . 6
⊢ (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)))) |
| 62 | | sseq1 4009 |
. . . . . 6
⊢ (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) → (𝑢 ⊆ 𝑆 ↔ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ⊆ 𝑆)) |
| 63 | 61, 62 | anbi12d 632 |
. . . . 5
⊢ (𝑢 = ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) → ((𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆) ↔ (𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ∧ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ⊆ 𝑆))) |
| 64 | 63 | rspcev 3622 |
. . . 4
⊢ ((ran
(𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ∈ 𝐽 ∧ (𝑥 ∈ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ∧ ran (𝑦 ∈ ((int‘𝐽)‘𝑆) ↦ ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)𝑦)) ⊆ 𝑆)) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆)) |
| 65 | 40, 53, 60, 64 | syl12anc 837 |
. . 3
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝑆) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆)) |
| 66 | 65 | ralrimiva 3146 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → ∀𝑥 ∈ 𝑆 ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆)) |
| 67 | | eltop2 22982 |
. . 3
⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝑆 ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆))) |
| 68 | 8, 67 | syl 17 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → (𝑆 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝑆 ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆))) |
| 69 | 66, 68 | mpbird 257 |
1
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ∈ 𝐽) |