Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐺) =
(Base‘𝐺) |
2 | 1 | subgss 18756 |
. . . 4
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
3 | 2 | 3ad2ant2 1133 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑆 ⊆ (Base‘𝐺)) |
4 | | subgntr.h |
. . . . . 6
⊢ 𝐽 = (TopOpen‘𝐺) |
5 | 4, 1 | tgptopon 23233 |
. . . . 5
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈
(TopOn‘(Base‘𝐺))) |
6 | 5 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
7 | | toponuni 22063 |
. . . 4
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → (Base‘𝐺) = ∪ 𝐽) |
8 | 6, 7 | syl 17 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (Base‘𝐺) = ∪ 𝐽) |
9 | 3, 8 | sseqtrd 3961 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑆 ⊆ ∪ 𝐽) |
10 | 8 | difeq1d 4056 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → ((Base‘𝐺) ∖ 𝑆) = (∪ 𝐽 ∖ 𝑆)) |
11 | | df-ima 5602 |
. . . . . . . 8
⊢ ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) “ 𝑆) = ran ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ↾ 𝑆) |
12 | 3 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ⊆ (Base‘𝐺)) |
13 | 12 | resmptd 5948 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ↾ 𝑆) = (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦))) |
14 | 13 | rneqd 5847 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ↾ 𝑆) = ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦))) |
15 | 11, 14 | eqtrid 2790 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) “ 𝑆) = ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦))) |
16 | | simpl1 1190 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝐺 ∈ TopGrp) |
17 | | eldifi 4061 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((Base‘𝐺) ∖ 𝑆) → 𝑥 ∈ (Base‘𝐺)) |
18 | 17 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑥 ∈ (Base‘𝐺)) |
19 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) = (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) |
20 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
21 | 19, 1, 20, 4 | tgplacthmeo 23254 |
. . . . . . . . 9
⊢ ((𝐺 ∈ TopGrp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ∈ (𝐽Homeo𝐽)) |
22 | 16, 18, 21 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ∈ (𝐽Homeo𝐽)) |
23 | | simpl3 1192 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ∈ 𝐽) |
24 | | hmeoima 22916 |
. . . . . . . 8
⊢ (((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ∈ (𝐽Homeo𝐽) ∧ 𝑆 ∈ 𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) “ 𝑆) ∈ 𝐽) |
25 | 22, 23, 24 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) “ 𝑆) ∈ 𝐽) |
26 | 15, 25 | eqeltrrd 2840 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ∈ 𝐽) |
27 | | tgpgrp 23229 |
. . . . . . . . 9
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
28 | 16, 27 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝐺 ∈ Grp) |
29 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝐺) = (0g‘𝐺) |
30 | 1, 20, 29 | grprid 18610 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
31 | 28, 18, 30 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
32 | | simpl2 1191 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ∈ (SubGrp‘𝐺)) |
33 | 29 | subg0cl 18763 |
. . . . . . . . 9
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝑆) |
34 | 32, 33 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (0g‘𝐺) ∈ 𝑆) |
35 | | ovex 7308 |
. . . . . . . 8
⊢ (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ V |
36 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) = (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) |
37 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑦 = (0g‘𝐺) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐺)(0g‘𝐺))) |
38 | 36, 37 | elrnmpt1s 5866 |
. . . . . . . 8
⊢
(((0g‘𝐺) ∈ 𝑆 ∧ (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ V) → (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦))) |
39 | 34, 35, 38 | sylancl 586 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦))) |
40 | 31, 39 | eqeltrrd 2840 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑥 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦))) |
41 | 28 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → 𝐺 ∈ Grp) |
42 | 18 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ (Base‘𝐺)) |
43 | 12 | sselda 3921 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ (Base‘𝐺)) |
44 | 1, 20 | grpcl 18585 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
45 | 41, 42, 43, 44 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
46 | | eldifn 4062 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((Base‘𝐺) ∖ 𝑆) → ¬ 𝑥 ∈ 𝑆) |
47 | 46 | ad2antlr 724 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → ¬ 𝑥 ∈ 𝑆) |
48 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(-g‘𝐺) = (-g‘𝐺) |
49 | 48 | subgsubcl 18766 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥(+g‘𝐺)𝑦) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑦) ∈ 𝑆) |
50 | 49 | 3com23 1125 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦 ∈ 𝑆 ∧ (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑦) ∈ 𝑆) |
51 | 50 | 3expia 1120 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦) ∈ 𝑆 → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑦) ∈ 𝑆)) |
52 | 32, 51 | sylan 580 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦) ∈ 𝑆 → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑦) ∈ 𝑆)) |
53 | 1, 20, 48 | grppncan 18666 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑦) = 𝑥) |
54 | 41, 42, 43, 53 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑦) = 𝑥) |
55 | 54 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → (((𝑥(+g‘𝐺)𝑦)(-g‘𝐺)𝑦) ∈ 𝑆 ↔ 𝑥 ∈ 𝑆)) |
56 | 52, 55 | sylibd 238 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → ((𝑥(+g‘𝐺)𝑦) ∈ 𝑆 → 𝑥 ∈ 𝑆)) |
57 | 47, 56 | mtod 197 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → ¬ (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
58 | 45, 57 | eldifd 3898 |
. . . . . . . 8
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) ∈ ((Base‘𝐺) ∖ 𝑆)) |
59 | 58 | fmpttd 6989 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)):𝑆⟶((Base‘𝐺) ∖ 𝑆)) |
60 | 59 | frnd 6608 |
. . . . . 6
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆)) |
61 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑢 = ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)))) |
62 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑢 = ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) → (𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆) ↔ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))) |
63 | 61, 62 | anbi12d 631 |
. . . . . . 7
⊢ (𝑢 = ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) → ((𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)) ↔ (𝑥 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ∧ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆)))) |
64 | 63 | rspcev 3561 |
. . . . . 6
⊢ ((ran
(𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ∈ 𝐽 ∧ (𝑥 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ∧ ran (𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))) |
65 | 26, 40, 60, 64 | syl12anc 834 |
. . . . 5
⊢ (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))) |
66 | 65 | ralrimiva 3103 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))) |
67 | | topontop 22062 |
. . . . . 6
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top) |
68 | 6, 67 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝐽 ∈ Top) |
69 | | eltop2 22125 |
. . . . 5
⊢ (𝐽 ∈ Top →
(((Base‘𝐺) ∖
𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))) |
70 | 68, 69 | syl 17 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (((Base‘𝐺) ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))) |
71 | 66, 70 | mpbird 256 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → ((Base‘𝐺) ∖ 𝑆) ∈ 𝐽) |
72 | 10, 71 | eqeltrrd 2840 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑆) ∈ 𝐽) |
73 | | eqid 2738 |
. . . 4
⊢ ∪ 𝐽 =
∪ 𝐽 |
74 | 73 | iscld 22178 |
. . 3
⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ ∪ 𝐽 ∧ (∪ 𝐽
∖ 𝑆) ∈ 𝐽))) |
75 | 68, 74 | syl 17 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ ∪ 𝐽 ∧ (∪ 𝐽
∖ 𝑆) ∈ 𝐽))) |
76 | 9, 72, 75 | mpbir2and 710 |
1
⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ (Clsd‘𝐽)) |