MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnsubg Structured version   Visualization version   GIF version

Theorem opnsubg 22319
Description: An open subgroup of a topological group is also closed. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
opnsubg ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ∈ (Clsd‘𝐽))

Proof of Theorem opnsubg
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2778 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
21subgss 17979 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
323ad2ant2 1125 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ⊆ (Base‘𝐺))
4 subgntr.h . . . . . 6 𝐽 = (TopOpen‘𝐺)
54, 1tgptopon 22294 . . . . 5 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
653ad2ant1 1124 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
7 toponuni 21126 . . . 4 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
86, 7syl 17 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → (Base‘𝐺) = 𝐽)
93, 8sseqtrd 3860 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 𝐽)
108difeq1d 3950 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ((Base‘𝐺) ∖ 𝑆) = ( 𝐽𝑆))
11 df-ima 5368 . . . . . . . 8 ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) = ran ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ↾ 𝑆)
123adantr 474 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ⊆ (Base‘𝐺))
1312resmptd 5702 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ↾ 𝑆) = (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
1413rneqd 5598 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ↾ 𝑆) = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
1511, 14syl5eq 2826 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
16 simpl1 1199 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝐺 ∈ TopGrp)
17 eldifi 3955 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐺) ∖ 𝑆) → 𝑥 ∈ (Base‘𝐺))
1817adantl 475 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑥 ∈ (Base‘𝐺))
19 eqid 2778 . . . . . . . . . 10 (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) = (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦))
20 eqid 2778 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
2119, 1, 20, 4tgplacthmeo 22315 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
2216, 18, 21syl2anc 579 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
23 simpl3 1203 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆𝐽)
24 hmeoima 21977 . . . . . . . 8 (((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽) ∧ 𝑆𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) ∈ 𝐽)
2522, 23, 24syl2anc 579 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) ∈ 𝐽)
2615, 25eqeltrrd 2860 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∈ 𝐽)
27 tgpgrp 22290 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2816, 27syl 17 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝐺 ∈ Grp)
29 eqid 2778 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
301, 20, 29grprid 17840 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
3128, 18, 30syl2anc 579 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
32 simpl2 1201 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ∈ (SubGrp‘𝐺))
3329subg0cl 17986 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
3432, 33syl 17 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (0g𝐺) ∈ 𝑆)
35 ovex 6954 . . . . . . . 8 (𝑥(+g𝐺)(0g𝐺)) ∈ V
36 eqid 2778 . . . . . . . . 9 (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) = (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦))
37 oveq2 6930 . . . . . . . . 9 (𝑦 = (0g𝐺) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐺)(0g𝐺)))
3836, 37elrnmpt1s 5619 . . . . . . . 8 (((0g𝐺) ∈ 𝑆 ∧ (𝑥(+g𝐺)(0g𝐺)) ∈ V) → (𝑥(+g𝐺)(0g𝐺)) ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
3934, 35, 38sylancl 580 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑥(+g𝐺)(0g𝐺)) ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
4031, 39eqeltrrd 2860 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
4128adantr 474 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → 𝐺 ∈ Grp)
4218adantr 474 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → 𝑥 ∈ (Base‘𝐺))
4312sselda 3821 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐺))
441, 20grpcl 17817 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
4541, 42, 43, 44syl3anc 1439 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
46 eldifn 3956 . . . . . . . . . . 11 (𝑥 ∈ ((Base‘𝐺) ∖ 𝑆) → ¬ 𝑥𝑆)
4746ad2antlr 717 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ¬ 𝑥𝑆)
48 eqid 2778 . . . . . . . . . . . . . . 15 (-g𝐺) = (-g𝐺)
4948subgsubcl 17989 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑆𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆)
50493com23 1117 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑆 ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆)
51503expia 1111 . . . . . . . . . . . 12 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆))
5232, 51sylan 575 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆))
531, 20, 48grppncan 17893 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) = 𝑥)
5441, 42, 43, 53syl3anc 1439 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) = 𝑥)
5554eleq1d 2844 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆𝑥𝑆))
5652, 55sylibd 231 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆𝑥𝑆))
5747, 56mtod 190 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ¬ (𝑥(+g𝐺)𝑦) ∈ 𝑆)
5845, 57eldifd 3803 . . . . . . . 8 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ ((Base‘𝐺) ∖ 𝑆))
5958fmpttd 6649 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)):𝑆⟶((Base‘𝐺) ∖ 𝑆))
6059frnd 6298 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))
61 eleq2 2848 . . . . . . . 8 (𝑢 = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) → (𝑥𝑢𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦))))
62 sseq1 3845 . . . . . . . 8 (𝑢 = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) → (𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆) ↔ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆)))
6361, 62anbi12d 624 . . . . . . 7 (𝑢 = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) → ((𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)) ↔ (𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∧ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))))
6463rspcev 3511 . . . . . 6 ((ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∈ 𝐽 ∧ (𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∧ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))) → ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))
6526, 40, 60, 64syl12anc 827 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))
6665ralrimiva 3148 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))
67 topontop 21125 . . . . . 6 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
686, 67syl 17 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝐽 ∈ Top)
69 eltop2 21187 . . . . 5 (𝐽 ∈ Top → (((Base‘𝐺) ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))))
7068, 69syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → (((Base‘𝐺) ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))))
7166, 70mpbird 249 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ((Base‘𝐺) ∖ 𝑆) ∈ 𝐽)
7210, 71eqeltrrd 2860 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ( 𝐽𝑆) ∈ 𝐽)
73 eqid 2778 . . . 4 𝐽 = 𝐽
7473iscld 21239 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 𝐽 ∧ ( 𝐽𝑆) ∈ 𝐽)))
7568, 74syl 17 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 𝐽 ∧ ( 𝐽𝑆) ∈ 𝐽)))
769, 72, 75mpbir2and 703 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090  wrex 3091  Vcvv 3398  cdif 3789  wss 3792   cuni 4671  cmpt 4965  ran crn 5356  cres 5357  cima 5358  cfv 6135  (class class class)co 6922  Basecbs 16255  +gcplusg 16338  TopOpenctopn 16468  0gc0g 16486  Grpcgrp 17809  -gcsg 17811  SubGrpcsubg 17972  Topctop 21105  TopOnctopon 21122  Clsdccld 21228  Homeochmeo 21965  TopGrpctgp 22283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-0g 16488  df-topgen 16490  df-plusf 17627  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-sbg 17814  df-subg 17975  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-cn 21439  df-cnp 21440  df-tx 21774  df-hmeo 21967  df-tmd 22284  df-tgp 22285
This theorem is referenced by:  cldsubg  22322  tgpconncompss  22325
  Copyright terms: Public domain W3C validator