MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnsubg Structured version   Visualization version   GIF version

Theorem opnsubg 24137
Description: An open subgroup of a topological group is also closed. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
opnsubg ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ∈ (Clsd‘𝐽))

Proof of Theorem opnsubg
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
21subgss 19167 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
323ad2ant2 1134 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ⊆ (Base‘𝐺))
4 subgntr.h . . . . . 6 𝐽 = (TopOpen‘𝐺)
54, 1tgptopon 24111 . . . . 5 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
653ad2ant1 1133 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
7 toponuni 22941 . . . 4 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
86, 7syl 17 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → (Base‘𝐺) = 𝐽)
93, 8sseqtrd 4049 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 𝐽)
108difeq1d 4148 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ((Base‘𝐺) ∖ 𝑆) = ( 𝐽𝑆))
11 df-ima 5713 . . . . . . . 8 ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) = ran ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ↾ 𝑆)
123adantr 480 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ⊆ (Base‘𝐺))
1312resmptd 6069 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ↾ 𝑆) = (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
1413rneqd 5963 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ↾ 𝑆) = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
1511, 14eqtrid 2792 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
16 simpl1 1191 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝐺 ∈ TopGrp)
17 eldifi 4154 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐺) ∖ 𝑆) → 𝑥 ∈ (Base‘𝐺))
1817adantl 481 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑥 ∈ (Base‘𝐺))
19 eqid 2740 . . . . . . . . . 10 (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) = (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦))
20 eqid 2740 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
2119, 1, 20, 4tgplacthmeo 24132 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
2216, 18, 21syl2anc 583 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
23 simpl3 1193 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆𝐽)
24 hmeoima 23794 . . . . . . . 8 (((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽) ∧ 𝑆𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) ∈ 𝐽)
2522, 23, 24syl2anc 583 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) ∈ 𝐽)
2615, 25eqeltrrd 2845 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∈ 𝐽)
27 tgpgrp 24107 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2816, 27syl 17 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝐺 ∈ Grp)
29 eqid 2740 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
301, 20, 29grprid 19008 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
3128, 18, 30syl2anc 583 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
32 simpl2 1192 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ∈ (SubGrp‘𝐺))
3329subg0cl 19174 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
3432, 33syl 17 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (0g𝐺) ∈ 𝑆)
35 ovex 7481 . . . . . . . 8 (𝑥(+g𝐺)(0g𝐺)) ∈ V
36 eqid 2740 . . . . . . . . 9 (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) = (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦))
37 oveq2 7456 . . . . . . . . 9 (𝑦 = (0g𝐺) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐺)(0g𝐺)))
3836, 37elrnmpt1s 5982 . . . . . . . 8 (((0g𝐺) ∈ 𝑆 ∧ (𝑥(+g𝐺)(0g𝐺)) ∈ V) → (𝑥(+g𝐺)(0g𝐺)) ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
3934, 35, 38sylancl 585 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑥(+g𝐺)(0g𝐺)) ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
4031, 39eqeltrrd 2845 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
4128adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → 𝐺 ∈ Grp)
4218adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → 𝑥 ∈ (Base‘𝐺))
4312sselda 4008 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐺))
441, 20grpcl 18981 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
4541, 42, 43, 44syl3anc 1371 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
46 eldifn 4155 . . . . . . . . . . 11 (𝑥 ∈ ((Base‘𝐺) ∖ 𝑆) → ¬ 𝑥𝑆)
4746ad2antlr 726 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ¬ 𝑥𝑆)
48 eqid 2740 . . . . . . . . . . . . . . 15 (-g𝐺) = (-g𝐺)
4948subgsubcl 19177 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑆𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆)
50493com23 1126 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑆 ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆)
51503expia 1121 . . . . . . . . . . . 12 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆))
5232, 51sylan 579 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆))
531, 20, 48grppncan 19071 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) = 𝑥)
5441, 42, 43, 53syl3anc 1371 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) = 𝑥)
5554eleq1d 2829 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆𝑥𝑆))
5652, 55sylibd 239 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆𝑥𝑆))
5747, 56mtod 198 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ¬ (𝑥(+g𝐺)𝑦) ∈ 𝑆)
5845, 57eldifd 3987 . . . . . . . 8 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ ((Base‘𝐺) ∖ 𝑆))
5958fmpttd 7149 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)):𝑆⟶((Base‘𝐺) ∖ 𝑆))
6059frnd 6755 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))
61 eleq2 2833 . . . . . . . 8 (𝑢 = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) → (𝑥𝑢𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦))))
62 sseq1 4034 . . . . . . . 8 (𝑢 = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) → (𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆) ↔ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆)))
6361, 62anbi12d 631 . . . . . . 7 (𝑢 = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) → ((𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)) ↔ (𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∧ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))))
6463rspcev 3635 . . . . . 6 ((ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∈ 𝐽 ∧ (𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∧ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))) → ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))
6526, 40, 60, 64syl12anc 836 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))
6665ralrimiva 3152 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))
67 topontop 22940 . . . . . 6 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
686, 67syl 17 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝐽 ∈ Top)
69 eltop2 23003 . . . . 5 (𝐽 ∈ Top → (((Base‘𝐺) ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))))
7068, 69syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → (((Base‘𝐺) ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))))
7166, 70mpbird 257 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ((Base‘𝐺) ∖ 𝑆) ∈ 𝐽)
7210, 71eqeltrrd 2845 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ( 𝐽𝑆) ∈ 𝐽)
73 eqid 2740 . . . 4 𝐽 = 𝐽
7473iscld 23056 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 𝐽 ∧ ( 𝐽𝑆) ∈ 𝐽)))
7568, 74syl 17 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 𝐽 ∧ ( 𝐽𝑆) ∈ 𝐽)))
769, 72, 75mpbir2and 712 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  wss 3976   cuni 4931  cmpt 5249  ran crn 5701  cres 5702  cima 5703  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  TopOpenctopn 17481  0gc0g 17499  Grpcgrp 18973  -gcsg 18975  SubGrpcsubg 19160  Topctop 22920  TopOnctopon 22937  Clsdccld 23045  Homeochmeo 23782  TopGrpctgp 24100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-topgen 17503  df-plusf 18677  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-cn 23256  df-cnp 23257  df-tx 23591  df-hmeo 23784  df-tmd 24101  df-tgp 24102
This theorem is referenced by:  cldsubg  24140  tgpconncompss  24143
  Copyright terms: Public domain W3C validator