Step | Hyp | Ref
| Expression |
1 | | eqid 2733 |
. . . . 5
β’
(BaseβπΊ) =
(BaseβπΊ) |
2 | 1 | subgss 18937 |
. . . 4
β’ (π β (SubGrpβπΊ) β π β (BaseβπΊ)) |
3 | 2 | 3ad2ant2 1135 |
. . 3
β’ ((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β π β (BaseβπΊ)) |
4 | | subgntr.h |
. . . . . 6
β’ π½ = (TopOpenβπΊ) |
5 | 4, 1 | tgptopon 23456 |
. . . . 5
β’ (πΊ β TopGrp β π½ β
(TopOnβ(BaseβπΊ))) |
6 | 5 | 3ad2ant1 1134 |
. . . 4
β’ ((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β π½ β (TopOnβ(BaseβπΊ))) |
7 | | toponuni 22286 |
. . . 4
β’ (π½ β
(TopOnβ(BaseβπΊ)) β (BaseβπΊ) = βͺ π½) |
8 | 6, 7 | syl 17 |
. . 3
β’ ((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β (BaseβπΊ) = βͺ π½) |
9 | 3, 8 | sseqtrd 3988 |
. 2
β’ ((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β π β βͺ π½) |
10 | 8 | difeq1d 4085 |
. . 3
β’ ((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β ((BaseβπΊ) β π) = (βͺ π½ β π)) |
11 | | df-ima 5650 |
. . . . . . . 8
β’ ((π¦ β (BaseβπΊ) β¦ (π₯(+gβπΊ)π¦)) β π) = ran ((π¦ β (BaseβπΊ) β¦ (π₯(+gβπΊ)π¦)) βΎ π) |
12 | 3 | adantr 482 |
. . . . . . . . . 10
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β π β (BaseβπΊ)) |
13 | 12 | resmptd 5998 |
. . . . . . . . 9
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β ((π¦ β (BaseβπΊ) β¦ (π₯(+gβπΊ)π¦)) βΎ π) = (π¦ β π β¦ (π₯(+gβπΊ)π¦))) |
14 | 13 | rneqd 5897 |
. . . . . . . 8
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β ran ((π¦ β (BaseβπΊ) β¦ (π₯(+gβπΊ)π¦)) βΎ π) = ran (π¦ β π β¦ (π₯(+gβπΊ)π¦))) |
15 | 11, 14 | eqtrid 2785 |
. . . . . . 7
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β ((π¦ β (BaseβπΊ) β¦ (π₯(+gβπΊ)π¦)) β π) = ran (π¦ β π β¦ (π₯(+gβπΊ)π¦))) |
16 | | simpl1 1192 |
. . . . . . . . 9
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β πΊ β TopGrp) |
17 | | eldifi 4090 |
. . . . . . . . . 10
β’ (π₯ β ((BaseβπΊ) β π) β π₯ β (BaseβπΊ)) |
18 | 17 | adantl 483 |
. . . . . . . . 9
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β π₯ β (BaseβπΊ)) |
19 | | eqid 2733 |
. . . . . . . . . 10
β’ (π¦ β (BaseβπΊ) β¦ (π₯(+gβπΊ)π¦)) = (π¦ β (BaseβπΊ) β¦ (π₯(+gβπΊ)π¦)) |
20 | | eqid 2733 |
. . . . . . . . . 10
β’
(+gβπΊ) = (+gβπΊ) |
21 | 19, 1, 20, 4 | tgplacthmeo 23477 |
. . . . . . . . 9
β’ ((πΊ β TopGrp β§ π₯ β (BaseβπΊ)) β (π¦ β (BaseβπΊ) β¦ (π₯(+gβπΊ)π¦)) β (π½Homeoπ½)) |
22 | 16, 18, 21 | syl2anc 585 |
. . . . . . . 8
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β (π¦ β (BaseβπΊ) β¦ (π₯(+gβπΊ)π¦)) β (π½Homeoπ½)) |
23 | | simpl3 1194 |
. . . . . . . 8
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β π β π½) |
24 | | hmeoima 23139 |
. . . . . . . 8
β’ (((π¦ β (BaseβπΊ) β¦ (π₯(+gβπΊ)π¦)) β (π½Homeoπ½) β§ π β π½) β ((π¦ β (BaseβπΊ) β¦ (π₯(+gβπΊ)π¦)) β π) β π½) |
25 | 22, 23, 24 | syl2anc 585 |
. . . . . . 7
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β ((π¦ β (BaseβπΊ) β¦ (π₯(+gβπΊ)π¦)) β π) β π½) |
26 | 15, 25 | eqeltrrd 2835 |
. . . . . 6
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β ran (π¦ β π β¦ (π₯(+gβπΊ)π¦)) β π½) |
27 | | tgpgrp 23452 |
. . . . . . . . 9
β’ (πΊ β TopGrp β πΊ β Grp) |
28 | 16, 27 | syl 17 |
. . . . . . . 8
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β πΊ β Grp) |
29 | | eqid 2733 |
. . . . . . . . 9
β’
(0gβπΊ) = (0gβπΊ) |
30 | 1, 20, 29 | grprid 18789 |
. . . . . . . 8
β’ ((πΊ β Grp β§ π₯ β (BaseβπΊ)) β (π₯(+gβπΊ)(0gβπΊ)) = π₯) |
31 | 28, 18, 30 | syl2anc 585 |
. . . . . . 7
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β (π₯(+gβπΊ)(0gβπΊ)) = π₯) |
32 | | simpl2 1193 |
. . . . . . . . 9
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β π β (SubGrpβπΊ)) |
33 | 29 | subg0cl 18944 |
. . . . . . . . 9
β’ (π β (SubGrpβπΊ) β
(0gβπΊ)
β π) |
34 | 32, 33 | syl 17 |
. . . . . . . 8
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β (0gβπΊ) β π) |
35 | | ovex 7394 |
. . . . . . . 8
β’ (π₯(+gβπΊ)(0gβπΊ)) β V |
36 | | eqid 2733 |
. . . . . . . . 9
β’ (π¦ β π β¦ (π₯(+gβπΊ)π¦)) = (π¦ β π β¦ (π₯(+gβπΊ)π¦)) |
37 | | oveq2 7369 |
. . . . . . . . 9
β’ (π¦ = (0gβπΊ) β (π₯(+gβπΊ)π¦) = (π₯(+gβπΊ)(0gβπΊ))) |
38 | 36, 37 | elrnmpt1s 5916 |
. . . . . . . 8
β’
(((0gβπΊ) β π β§ (π₯(+gβπΊ)(0gβπΊ)) β V) β (π₯(+gβπΊ)(0gβπΊ)) β ran (π¦ β π β¦ (π₯(+gβπΊ)π¦))) |
39 | 34, 35, 38 | sylancl 587 |
. . . . . . 7
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β (π₯(+gβπΊ)(0gβπΊ)) β ran (π¦ β π β¦ (π₯(+gβπΊ)π¦))) |
40 | 31, 39 | eqeltrrd 2835 |
. . . . . 6
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β π₯ β ran (π¦ β π β¦ (π₯(+gβπΊ)π¦))) |
41 | 28 | adantr 482 |
. . . . . . . . . 10
β’ ((((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β§ π¦ β π) β πΊ β Grp) |
42 | 18 | adantr 482 |
. . . . . . . . . 10
β’ ((((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β§ π¦ β π) β π₯ β (BaseβπΊ)) |
43 | 12 | sselda 3948 |
. . . . . . . . . 10
β’ ((((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β§ π¦ β π) β π¦ β (BaseβπΊ)) |
44 | 1, 20 | grpcl 18764 |
. . . . . . . . . 10
β’ ((πΊ β Grp β§ π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ)) β (π₯(+gβπΊ)π¦) β (BaseβπΊ)) |
45 | 41, 42, 43, 44 | syl3anc 1372 |
. . . . . . . . 9
β’ ((((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β§ π¦ β π) β (π₯(+gβπΊ)π¦) β (BaseβπΊ)) |
46 | | eldifn 4091 |
. . . . . . . . . . 11
β’ (π₯ β ((BaseβπΊ) β π) β Β¬ π₯ β π) |
47 | 46 | ad2antlr 726 |
. . . . . . . . . 10
β’ ((((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β§ π¦ β π) β Β¬ π₯ β π) |
48 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(-gβπΊ) = (-gβπΊ) |
49 | 48 | subgsubcl 18947 |
. . . . . . . . . . . . . 14
β’ ((π β (SubGrpβπΊ) β§ (π₯(+gβπΊ)π¦) β π β§ π¦ β π) β ((π₯(+gβπΊ)π¦)(-gβπΊ)π¦) β π) |
50 | 49 | 3com23 1127 |
. . . . . . . . . . . . 13
β’ ((π β (SubGrpβπΊ) β§ π¦ β π β§ (π₯(+gβπΊ)π¦) β π) β ((π₯(+gβπΊ)π¦)(-gβπΊ)π¦) β π) |
51 | 50 | 3expia 1122 |
. . . . . . . . . . . 12
β’ ((π β (SubGrpβπΊ) β§ π¦ β π) β ((π₯(+gβπΊ)π¦) β π β ((π₯(+gβπΊ)π¦)(-gβπΊ)π¦) β π)) |
52 | 32, 51 | sylan 581 |
. . . . . . . . . . 11
β’ ((((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β§ π¦ β π) β ((π₯(+gβπΊ)π¦) β π β ((π₯(+gβπΊ)π¦)(-gβπΊ)π¦) β π)) |
53 | 1, 20, 48 | grppncan 18846 |
. . . . . . . . . . . . 13
β’ ((πΊ β Grp β§ π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ)) β ((π₯(+gβπΊ)π¦)(-gβπΊ)π¦) = π₯) |
54 | 41, 42, 43, 53 | syl3anc 1372 |
. . . . . . . . . . . 12
β’ ((((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β§ π¦ β π) β ((π₯(+gβπΊ)π¦)(-gβπΊ)π¦) = π₯) |
55 | 54 | eleq1d 2819 |
. . . . . . . . . . 11
β’ ((((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β§ π¦ β π) β (((π₯(+gβπΊ)π¦)(-gβπΊ)π¦) β π β π₯ β π)) |
56 | 52, 55 | sylibd 238 |
. . . . . . . . . 10
β’ ((((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β§ π¦ β π) β ((π₯(+gβπΊ)π¦) β π β π₯ β π)) |
57 | 47, 56 | mtod 197 |
. . . . . . . . 9
β’ ((((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β§ π¦ β π) β Β¬ (π₯(+gβπΊ)π¦) β π) |
58 | 45, 57 | eldifd 3925 |
. . . . . . . 8
β’ ((((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β§ π¦ β π) β (π₯(+gβπΊ)π¦) β ((BaseβπΊ) β π)) |
59 | 58 | fmpttd 7067 |
. . . . . . 7
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β (π¦ β π β¦ (π₯(+gβπΊ)π¦)):πβΆ((BaseβπΊ) β π)) |
60 | 59 | frnd 6680 |
. . . . . 6
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β ran (π¦ β π β¦ (π₯(+gβπΊ)π¦)) β ((BaseβπΊ) β π)) |
61 | | eleq2 2823 |
. . . . . . . 8
β’ (π’ = ran (π¦ β π β¦ (π₯(+gβπΊ)π¦)) β (π₯ β π’ β π₯ β ran (π¦ β π β¦ (π₯(+gβπΊ)π¦)))) |
62 | | sseq1 3973 |
. . . . . . . 8
β’ (π’ = ran (π¦ β π β¦ (π₯(+gβπΊ)π¦)) β (π’ β ((BaseβπΊ) β π) β ran (π¦ β π β¦ (π₯(+gβπΊ)π¦)) β ((BaseβπΊ) β π))) |
63 | 61, 62 | anbi12d 632 |
. . . . . . 7
β’ (π’ = ran (π¦ β π β¦ (π₯(+gβπΊ)π¦)) β ((π₯ β π’ β§ π’ β ((BaseβπΊ) β π)) β (π₯ β ran (π¦ β π β¦ (π₯(+gβπΊ)π¦)) β§ ran (π¦ β π β¦ (π₯(+gβπΊ)π¦)) β ((BaseβπΊ) β π)))) |
64 | 63 | rspcev 3583 |
. . . . . 6
β’ ((ran
(π¦ β π β¦ (π₯(+gβπΊ)π¦)) β π½ β§ (π₯ β ran (π¦ β π β¦ (π₯(+gβπΊ)π¦)) β§ ran (π¦ β π β¦ (π₯(+gβπΊ)π¦)) β ((BaseβπΊ) β π))) β βπ’ β π½ (π₯ β π’ β§ π’ β ((BaseβπΊ) β π))) |
65 | 26, 40, 60, 64 | syl12anc 836 |
. . . . 5
β’ (((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β§ π₯ β ((BaseβπΊ) β π)) β βπ’ β π½ (π₯ β π’ β§ π’ β ((BaseβπΊ) β π))) |
66 | 65 | ralrimiva 3140 |
. . . 4
β’ ((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β βπ₯ β ((BaseβπΊ) β π)βπ’ β π½ (π₯ β π’ β§ π’ β ((BaseβπΊ) β π))) |
67 | | topontop 22285 |
. . . . . 6
β’ (π½ β
(TopOnβ(BaseβπΊ)) β π½ β Top) |
68 | 6, 67 | syl 17 |
. . . . 5
β’ ((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β π½ β Top) |
69 | | eltop2 22348 |
. . . . 5
β’ (π½ β Top β
(((BaseβπΊ) β
π) β π½ β βπ₯ β ((BaseβπΊ) β π)βπ’ β π½ (π₯ β π’ β§ π’ β ((BaseβπΊ) β π)))) |
70 | 68, 69 | syl 17 |
. . . 4
β’ ((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β (((BaseβπΊ) β π) β π½ β βπ₯ β ((BaseβπΊ) β π)βπ’ β π½ (π₯ β π’ β§ π’ β ((BaseβπΊ) β π)))) |
71 | 66, 70 | mpbird 257 |
. . 3
β’ ((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β ((BaseβπΊ) β π) β π½) |
72 | 10, 71 | eqeltrrd 2835 |
. 2
β’ ((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β (βͺ π½ β π) β π½) |
73 | | eqid 2733 |
. . . 4
β’ βͺ π½ =
βͺ π½ |
74 | 73 | iscld 22401 |
. . 3
β’ (π½ β Top β (π β (Clsdβπ½) β (π β βͺ π½ β§ (βͺ π½
β π) β π½))) |
75 | 68, 74 | syl 17 |
. 2
β’ ((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β (π β (Clsdβπ½) β (π β βͺ π½ β§ (βͺ π½
β π) β π½))) |
76 | 9, 72, 75 | mpbir2and 712 |
1
β’ ((πΊ β TopGrp β§ π β (SubGrpβπΊ) β§ π β π½) β π β (Clsdβπ½)) |