MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnsubg Structured version   Visualization version   GIF version

Theorem opnsubg 24116
Description: An open subgroup of a topological group is also closed. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
opnsubg ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ∈ (Clsd‘𝐽))

Proof of Theorem opnsubg
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
21subgss 19145 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
323ad2ant2 1135 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ⊆ (Base‘𝐺))
4 subgntr.h . . . . . 6 𝐽 = (TopOpen‘𝐺)
54, 1tgptopon 24090 . . . . 5 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
653ad2ant1 1134 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
7 toponuni 22920 . . . 4 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
86, 7syl 17 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → (Base‘𝐺) = 𝐽)
93, 8sseqtrd 4020 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 𝐽)
108difeq1d 4125 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ((Base‘𝐺) ∖ 𝑆) = ( 𝐽𝑆))
11 df-ima 5698 . . . . . . . 8 ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) = ran ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ↾ 𝑆)
123adantr 480 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ⊆ (Base‘𝐺))
1312resmptd 6058 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ↾ 𝑆) = (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
1413rneqd 5949 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ↾ 𝑆) = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
1511, 14eqtrid 2789 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
16 simpl1 1192 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝐺 ∈ TopGrp)
17 eldifi 4131 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐺) ∖ 𝑆) → 𝑥 ∈ (Base‘𝐺))
1817adantl 481 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑥 ∈ (Base‘𝐺))
19 eqid 2737 . . . . . . . . . 10 (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) = (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦))
20 eqid 2737 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
2119, 1, 20, 4tgplacthmeo 24111 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
2216, 18, 21syl2anc 584 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
23 simpl3 1194 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆𝐽)
24 hmeoima 23773 . . . . . . . 8 (((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽) ∧ 𝑆𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) ∈ 𝐽)
2522, 23, 24syl2anc 584 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) ∈ 𝐽)
2615, 25eqeltrrd 2842 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∈ 𝐽)
27 tgpgrp 24086 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2816, 27syl 17 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝐺 ∈ Grp)
29 eqid 2737 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
301, 20, 29grprid 18986 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
3128, 18, 30syl2anc 584 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
32 simpl2 1193 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ∈ (SubGrp‘𝐺))
3329subg0cl 19152 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
3432, 33syl 17 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (0g𝐺) ∈ 𝑆)
35 ovex 7464 . . . . . . . 8 (𝑥(+g𝐺)(0g𝐺)) ∈ V
36 eqid 2737 . . . . . . . . 9 (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) = (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦))
37 oveq2 7439 . . . . . . . . 9 (𝑦 = (0g𝐺) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐺)(0g𝐺)))
3836, 37elrnmpt1s 5970 . . . . . . . 8 (((0g𝐺) ∈ 𝑆 ∧ (𝑥(+g𝐺)(0g𝐺)) ∈ V) → (𝑥(+g𝐺)(0g𝐺)) ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
3934, 35, 38sylancl 586 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑥(+g𝐺)(0g𝐺)) ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
4031, 39eqeltrrd 2842 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
4128adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → 𝐺 ∈ Grp)
4218adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → 𝑥 ∈ (Base‘𝐺))
4312sselda 3983 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐺))
441, 20grpcl 18959 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
4541, 42, 43, 44syl3anc 1373 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
46 eldifn 4132 . . . . . . . . . . 11 (𝑥 ∈ ((Base‘𝐺) ∖ 𝑆) → ¬ 𝑥𝑆)
4746ad2antlr 727 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ¬ 𝑥𝑆)
48 eqid 2737 . . . . . . . . . . . . . . 15 (-g𝐺) = (-g𝐺)
4948subgsubcl 19155 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑆𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆)
50493com23 1127 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑆 ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆)
51503expia 1122 . . . . . . . . . . . 12 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆))
5232, 51sylan 580 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆))
531, 20, 48grppncan 19049 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) = 𝑥)
5441, 42, 43, 53syl3anc 1373 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) = 𝑥)
5554eleq1d 2826 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆𝑥𝑆))
5652, 55sylibd 239 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆𝑥𝑆))
5747, 56mtod 198 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ¬ (𝑥(+g𝐺)𝑦) ∈ 𝑆)
5845, 57eldifd 3962 . . . . . . . 8 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ ((Base‘𝐺) ∖ 𝑆))
5958fmpttd 7135 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)):𝑆⟶((Base‘𝐺) ∖ 𝑆))
6059frnd 6744 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))
61 eleq2 2830 . . . . . . . 8 (𝑢 = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) → (𝑥𝑢𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦))))
62 sseq1 4009 . . . . . . . 8 (𝑢 = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) → (𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆) ↔ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆)))
6361, 62anbi12d 632 . . . . . . 7 (𝑢 = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) → ((𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)) ↔ (𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∧ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))))
6463rspcev 3622 . . . . . 6 ((ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∈ 𝐽 ∧ (𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∧ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))) → ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))
6526, 40, 60, 64syl12anc 837 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))
6665ralrimiva 3146 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))
67 topontop 22919 . . . . . 6 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
686, 67syl 17 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝐽 ∈ Top)
69 eltop2 22982 . . . . 5 (𝐽 ∈ Top → (((Base‘𝐺) ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))))
7068, 69syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → (((Base‘𝐺) ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))))
7166, 70mpbird 257 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ((Base‘𝐺) ∖ 𝑆) ∈ 𝐽)
7210, 71eqeltrrd 2842 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ( 𝐽𝑆) ∈ 𝐽)
73 eqid 2737 . . . 4 𝐽 = 𝐽
7473iscld 23035 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 𝐽 ∧ ( 𝐽𝑆) ∈ 𝐽)))
7568, 74syl 17 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 𝐽 ∧ ( 𝐽𝑆) ∈ 𝐽)))
769, 72, 75mpbir2and 713 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  cdif 3948  wss 3951   cuni 4907  cmpt 5225  ran crn 5686  cres 5687  cima 5688  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  TopOpenctopn 17466  0gc0g 17484  Grpcgrp 18951  -gcsg 18953  SubGrpcsubg 19138  Topctop 22899  TopOnctopon 22916  Clsdccld 23024  Homeochmeo 23761  TopGrpctgp 24079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-topgen 17488  df-plusf 18652  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-cn 23235  df-cnp 23236  df-tx 23570  df-hmeo 23763  df-tmd 24080  df-tgp 24081
This theorem is referenced by:  cldsubg  24119  tgpconncompss  24122
  Copyright terms: Public domain W3C validator