MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnsubg Structured version   Visualization version   GIF version

Theorem opnsubg 23993
Description: An open subgroup of a topological group is also closed. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
opnsubg ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ∈ (Clsd‘𝐽))

Proof of Theorem opnsubg
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
21subgss 19006 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
323ad2ant2 1134 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ⊆ (Base‘𝐺))
4 subgntr.h . . . . . 6 𝐽 = (TopOpen‘𝐺)
54, 1tgptopon 23967 . . . . 5 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
653ad2ant1 1133 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
7 toponuni 22799 . . . 4 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
86, 7syl 17 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → (Base‘𝐺) = 𝐽)
93, 8sseqtrd 3972 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 𝐽)
108difeq1d 4076 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ((Base‘𝐺) ∖ 𝑆) = ( 𝐽𝑆))
11 df-ima 5632 . . . . . . . 8 ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) = ran ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ↾ 𝑆)
123adantr 480 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ⊆ (Base‘𝐺))
1312resmptd 5991 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ↾ 𝑆) = (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
1413rneqd 5880 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ↾ 𝑆) = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
1511, 14eqtrid 2776 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
16 simpl1 1192 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝐺 ∈ TopGrp)
17 eldifi 4082 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐺) ∖ 𝑆) → 𝑥 ∈ (Base‘𝐺))
1817adantl 481 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑥 ∈ (Base‘𝐺))
19 eqid 2729 . . . . . . . . . 10 (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) = (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦))
20 eqid 2729 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
2119, 1, 20, 4tgplacthmeo 23988 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
2216, 18, 21syl2anc 584 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
23 simpl3 1194 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆𝐽)
24 hmeoima 23650 . . . . . . . 8 (((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽) ∧ 𝑆𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) ∈ 𝐽)
2522, 23, 24syl2anc 584 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) ∈ 𝐽)
2615, 25eqeltrrd 2829 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∈ 𝐽)
27 tgpgrp 23963 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2816, 27syl 17 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝐺 ∈ Grp)
29 eqid 2729 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
301, 20, 29grprid 18847 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
3128, 18, 30syl2anc 584 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
32 simpl2 1193 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ∈ (SubGrp‘𝐺))
3329subg0cl 19013 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
3432, 33syl 17 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (0g𝐺) ∈ 𝑆)
35 ovex 7382 . . . . . . . 8 (𝑥(+g𝐺)(0g𝐺)) ∈ V
36 eqid 2729 . . . . . . . . 9 (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) = (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦))
37 oveq2 7357 . . . . . . . . 9 (𝑦 = (0g𝐺) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐺)(0g𝐺)))
3836, 37elrnmpt1s 5901 . . . . . . . 8 (((0g𝐺) ∈ 𝑆 ∧ (𝑥(+g𝐺)(0g𝐺)) ∈ V) → (𝑥(+g𝐺)(0g𝐺)) ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
3934, 35, 38sylancl 586 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑥(+g𝐺)(0g𝐺)) ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
4031, 39eqeltrrd 2829 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
4128adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → 𝐺 ∈ Grp)
4218adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → 𝑥 ∈ (Base‘𝐺))
4312sselda 3935 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐺))
441, 20grpcl 18820 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
4541, 42, 43, 44syl3anc 1373 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
46 eldifn 4083 . . . . . . . . . . 11 (𝑥 ∈ ((Base‘𝐺) ∖ 𝑆) → ¬ 𝑥𝑆)
4746ad2antlr 727 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ¬ 𝑥𝑆)
48 eqid 2729 . . . . . . . . . . . . . . 15 (-g𝐺) = (-g𝐺)
4948subgsubcl 19016 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑆𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆)
50493com23 1126 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑆 ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆)
51503expia 1121 . . . . . . . . . . . 12 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆))
5232, 51sylan 580 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆))
531, 20, 48grppncan 18910 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) = 𝑥)
5441, 42, 43, 53syl3anc 1373 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) = 𝑥)
5554eleq1d 2813 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆𝑥𝑆))
5652, 55sylibd 239 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆𝑥𝑆))
5747, 56mtod 198 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ¬ (𝑥(+g𝐺)𝑦) ∈ 𝑆)
5845, 57eldifd 3914 . . . . . . . 8 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ ((Base‘𝐺) ∖ 𝑆))
5958fmpttd 7049 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)):𝑆⟶((Base‘𝐺) ∖ 𝑆))
6059frnd 6660 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))
61 eleq2 2817 . . . . . . . 8 (𝑢 = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) → (𝑥𝑢𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦))))
62 sseq1 3961 . . . . . . . 8 (𝑢 = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) → (𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆) ↔ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆)))
6361, 62anbi12d 632 . . . . . . 7 (𝑢 = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) → ((𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)) ↔ (𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∧ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))))
6463rspcev 3577 . . . . . 6 ((ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∈ 𝐽 ∧ (𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∧ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))) → ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))
6526, 40, 60, 64syl12anc 836 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))
6665ralrimiva 3121 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))
67 topontop 22798 . . . . . 6 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
686, 67syl 17 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝐽 ∈ Top)
69 eltop2 22860 . . . . 5 (𝐽 ∈ Top → (((Base‘𝐺) ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))))
7068, 69syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → (((Base‘𝐺) ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))))
7166, 70mpbird 257 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ((Base‘𝐺) ∖ 𝑆) ∈ 𝐽)
7210, 71eqeltrrd 2829 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ( 𝐽𝑆) ∈ 𝐽)
73 eqid 2729 . . . 4 𝐽 = 𝐽
7473iscld 22912 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 𝐽 ∧ ( 𝐽𝑆) ∈ 𝐽)))
7568, 74syl 17 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 𝐽 ∧ ( 𝐽𝑆) ∈ 𝐽)))
769, 72, 75mpbir2and 713 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  cdif 3900  wss 3903   cuni 4858  cmpt 5173  ran crn 5620  cres 5621  cima 5622  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  TopOpenctopn 17325  0gc0g 17343  Grpcgrp 18812  -gcsg 18814  SubGrpcsubg 18999  Topctop 22778  TopOnctopon 22795  Clsdccld 22901  Homeochmeo 23638  TopGrpctgp 23956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-topgen 17347  df-plusf 18513  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-cn 23112  df-cnp 23113  df-tx 23447  df-hmeo 23640  df-tmd 23957  df-tgp 23958
This theorem is referenced by:  cldsubg  23996  tgpconncompss  23999
  Copyright terms: Public domain W3C validator