MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnsubg Structured version   Visualization version   GIF version

Theorem opnsubg 22713
Description: An open subgroup of a topological group is also closed. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
opnsubg ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ∈ (Clsd‘𝐽))

Proof of Theorem opnsubg
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
21subgss 18272 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
323ad2ant2 1131 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ⊆ (Base‘𝐺))
4 subgntr.h . . . . . 6 𝐽 = (TopOpen‘𝐺)
54, 1tgptopon 22687 . . . . 5 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
653ad2ant1 1130 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
7 toponuni 21519 . . . 4 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
86, 7syl 17 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → (Base‘𝐺) = 𝐽)
93, 8sseqtrd 3955 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 𝐽)
108difeq1d 4049 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ((Base‘𝐺) ∖ 𝑆) = ( 𝐽𝑆))
11 df-ima 5532 . . . . . . . 8 ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) = ran ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ↾ 𝑆)
123adantr 484 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ⊆ (Base‘𝐺))
1312resmptd 5875 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ↾ 𝑆) = (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
1413rneqd 5772 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ↾ 𝑆) = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
1511, 14syl5eq 2845 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
16 simpl1 1188 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝐺 ∈ TopGrp)
17 eldifi 4054 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐺) ∖ 𝑆) → 𝑥 ∈ (Base‘𝐺))
1817adantl 485 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑥 ∈ (Base‘𝐺))
19 eqid 2798 . . . . . . . . . 10 (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) = (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦))
20 eqid 2798 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
2119, 1, 20, 4tgplacthmeo 22708 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
2216, 18, 21syl2anc 587 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽))
23 simpl3 1190 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆𝐽)
24 hmeoima 22370 . . . . . . . 8 (((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (𝐽Homeo𝐽) ∧ 𝑆𝐽) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) ∈ 𝐽)
2522, 23, 24syl2anc 587 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ((𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) “ 𝑆) ∈ 𝐽)
2615, 25eqeltrrd 2891 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∈ 𝐽)
27 tgpgrp 22683 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2816, 27syl 17 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝐺 ∈ Grp)
29 eqid 2798 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
301, 20, 29grprid 18126 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
3128, 18, 30syl2anc 587 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
32 simpl2 1189 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑆 ∈ (SubGrp‘𝐺))
3329subg0cl 18279 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
3432, 33syl 17 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (0g𝐺) ∈ 𝑆)
35 ovex 7168 . . . . . . . 8 (𝑥(+g𝐺)(0g𝐺)) ∈ V
36 eqid 2798 . . . . . . . . 9 (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) = (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦))
37 oveq2 7143 . . . . . . . . 9 (𝑦 = (0g𝐺) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐺)(0g𝐺)))
3836, 37elrnmpt1s 5793 . . . . . . . 8 (((0g𝐺) ∈ 𝑆 ∧ (𝑥(+g𝐺)(0g𝐺)) ∈ V) → (𝑥(+g𝐺)(0g𝐺)) ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
3934, 35, 38sylancl 589 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑥(+g𝐺)(0g𝐺)) ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
4031, 39eqeltrrd 2891 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → 𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
4128adantr 484 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → 𝐺 ∈ Grp)
4218adantr 484 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → 𝑥 ∈ (Base‘𝐺))
4312sselda 3915 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝐺))
441, 20grpcl 18103 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
4541, 42, 43, 44syl3anc 1368 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
46 eldifn 4055 . . . . . . . . . . 11 (𝑥 ∈ ((Base‘𝐺) ∖ 𝑆) → ¬ 𝑥𝑆)
4746ad2antlr 726 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ¬ 𝑥𝑆)
48 eqid 2798 . . . . . . . . . . . . . . 15 (-g𝐺) = (-g𝐺)
4948subgsubcl 18282 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑆𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆)
50493com23 1123 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑆 ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆)
51503expia 1118 . . . . . . . . . . . 12 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆))
5232, 51sylan 583 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆))
531, 20, 48grppncan 18182 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) = 𝑥)
5441, 42, 43, 53syl3anc 1368 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) = 𝑥)
5554eleq1d 2874 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → (((𝑥(+g𝐺)𝑦)(-g𝐺)𝑦) ∈ 𝑆𝑥𝑆))
5652, 55sylibd 242 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆𝑥𝑆))
5747, 56mtod 201 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → ¬ (𝑥(+g𝐺)𝑦) ∈ 𝑆)
5845, 57eldifd 3892 . . . . . . . 8 ((((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) ∧ 𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ ((Base‘𝐺) ∖ 𝑆))
5958fmpttd 6856 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)):𝑆⟶((Base‘𝐺) ∖ 𝑆))
6059frnd 6494 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))
61 eleq2 2878 . . . . . . . 8 (𝑢 = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) → (𝑥𝑢𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦))))
62 sseq1 3940 . . . . . . . 8 (𝑢 = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) → (𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆) ↔ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆)))
6361, 62anbi12d 633 . . . . . . 7 (𝑢 = ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) → ((𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)) ↔ (𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∧ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))))
6463rspcev 3571 . . . . . 6 ((ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∈ 𝐽 ∧ (𝑥 ∈ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∧ ran (𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ⊆ ((Base‘𝐺) ∖ 𝑆))) → ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))
6526, 40, 60, 64syl12anc 835 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)) → ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))
6665ralrimiva 3149 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆)))
67 topontop 21518 . . . . . 6 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
686, 67syl 17 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝐽 ∈ Top)
69 eltop2 21580 . . . . 5 (𝐽 ∈ Top → (((Base‘𝐺) ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))))
7068, 69syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → (((Base‘𝐺) ∖ 𝑆) ∈ 𝐽 ↔ ∀𝑥 ∈ ((Base‘𝐺) ∖ 𝑆)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ ((Base‘𝐺) ∖ 𝑆))))
7166, 70mpbird 260 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ((Base‘𝐺) ∖ 𝑆) ∈ 𝐽)
7210, 71eqeltrrd 2891 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → ( 𝐽𝑆) ∈ 𝐽)
73 eqid 2798 . . . 4 𝐽 = 𝐽
7473iscld 21632 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 𝐽 ∧ ( 𝐽𝑆) ∈ 𝐽)))
7568, 74syl 17 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 𝐽 ∧ ( 𝐽𝑆) ∈ 𝐽)))
769, 72, 75mpbir2and 712 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  cdif 3878  wss 3881   cuni 4800  cmpt 5110  ran crn 5520  cres 5521  cima 5522  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  TopOpenctopn 16687  0gc0g 16705  Grpcgrp 18095  -gcsg 18097  SubGrpcsubg 18265  Topctop 21498  TopOnctopon 21515  Clsdccld 21621  Homeochmeo 22358  TopGrpctgp 22676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-topgen 16709  df-plusf 17843  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-cn 21832  df-cnp 21833  df-tx 22167  df-hmeo 22360  df-tmd 22677  df-tgp 22678
This theorem is referenced by:  cldsubg  22716  tgpconncompss  22719
  Copyright terms: Public domain W3C validator