![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tngtset | Structured version Visualization version GIF version |
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
tngbas.t | β’ π = (πΊ toNrmGrp π) |
tngtset.2 | β’ π· = (distβπ) |
tngtset.3 | β’ π½ = (MetOpenβπ·) |
Ref | Expression |
---|---|
tngtset | β’ ((πΊ β π β§ π β π) β π½ = (TopSetβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7444 | . . 3 β’ (πΊ sSet β¨(distβndx), (π β (-gβπΊ))β©) β V | |
2 | fvex 6904 | . . 3 β’ (MetOpenβ(π β (-gβπΊ))) β V | |
3 | tsetid 17300 | . . . 4 β’ TopSet = Slot (TopSetβndx) | |
4 | 3 | setsid 17143 | . . 3 β’ (((πΊ sSet β¨(distβndx), (π β (-gβπΊ))β©) β V β§ (MetOpenβ(π β (-gβπΊ))) β V) β (MetOpenβ(π β (-gβπΊ))) = (TopSetβ((πΊ sSet β¨(distβndx), (π β (-gβπΊ))β©) sSet β¨(TopSetβndx), (MetOpenβ(π β (-gβπΊ)))β©))) |
5 | 1, 2, 4 | mp2an 690 | . 2 β’ (MetOpenβ(π β (-gβπΊ))) = (TopSetβ((πΊ sSet β¨(distβndx), (π β (-gβπΊ))β©) sSet β¨(TopSetβndx), (MetOpenβ(π β (-gβπΊ)))β©)) |
6 | tngtset.3 | . . 3 β’ π½ = (MetOpenβπ·) | |
7 | tngtset.2 | . . . . . 6 β’ π· = (distβπ) | |
8 | tngbas.t | . . . . . . 7 β’ π = (πΊ toNrmGrp π) | |
9 | eqid 2732 | . . . . . . 7 β’ (-gβπΊ) = (-gβπΊ) | |
10 | 8, 9 | tngds 24171 | . . . . . 6 β’ (π β π β (π β (-gβπΊ)) = (distβπ)) |
11 | 7, 10 | eqtr4id 2791 | . . . . 5 β’ (π β π β π· = (π β (-gβπΊ))) |
12 | 11 | adantl 482 | . . . 4 β’ ((πΊ β π β§ π β π) β π· = (π β (-gβπΊ))) |
13 | 12 | fveq2d 6895 | . . 3 β’ ((πΊ β π β§ π β π) β (MetOpenβπ·) = (MetOpenβ(π β (-gβπΊ)))) |
14 | 6, 13 | eqtrid 2784 | . 2 β’ ((πΊ β π β§ π β π) β π½ = (MetOpenβ(π β (-gβπΊ)))) |
15 | eqid 2732 | . . . 4 β’ (π β (-gβπΊ)) = (π β (-gβπΊ)) | |
16 | eqid 2732 | . . . 4 β’ (MetOpenβ(π β (-gβπΊ))) = (MetOpenβ(π β (-gβπΊ))) | |
17 | 8, 9, 15, 16 | tngval 24155 | . . 3 β’ ((πΊ β π β§ π β π) β π = ((πΊ sSet β¨(distβndx), (π β (-gβπΊ))β©) sSet β¨(TopSetβndx), (MetOpenβ(π β (-gβπΊ)))β©)) |
18 | 17 | fveq2d 6895 | . 2 β’ ((πΊ β π β§ π β π) β (TopSetβπ) = (TopSetβ((πΊ sSet β¨(distβndx), (π β (-gβπΊ))β©) sSet β¨(TopSetβndx), (MetOpenβ(π β (-gβπΊ)))β©))) |
19 | 5, 14, 18 | 3eqtr4a 2798 | 1 β’ ((πΊ β π β§ π β π) β π½ = (TopSetβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β¨cop 4634 β ccom 5680 βcfv 6543 (class class class)co 7411 sSet csts 17098 ndxcnx 17128 TopSetcts 17205 distcds 17208 -gcsg 18823 MetOpencmopn 20940 toNrmGrp ctng 24094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-2 12277 df-3 12278 df-4 12279 df-5 12280 df-6 12281 df-7 12282 df-8 12283 df-9 12284 df-n0 12475 df-z 12561 df-dec 12680 df-sets 17099 df-slot 17117 df-ndx 17129 df-tset 17218 df-ds 17221 df-tng 24100 |
This theorem is referenced by: tngtopn 24174 |
Copyright terms: Public domain | W3C validator |