Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngtset Structured version   Visualization version   GIF version

Theorem tngtset 23296
 Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngtset.2 𝐷 = (dist‘𝑇)
tngtset.3 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
tngtset ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopSet‘𝑇))

Proof of Theorem tngtset
StepHypRef Expression
1 ovex 7178 . . 3 (𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) ∈ V
2 fvex 6668 . . 3 (MetOpen‘(𝑁 ∘ (-g𝐺))) ∈ V
3 tsetid 16672 . . . 4 TopSet = Slot (TopSet‘ndx)
43setsid 16550 . . 3 (((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) ∈ V ∧ (MetOpen‘(𝑁 ∘ (-g𝐺))) ∈ V) → (MetOpen‘(𝑁 ∘ (-g𝐺))) = (TopSet‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩)))
51, 2, 4mp2an 691 . 2 (MetOpen‘(𝑁 ∘ (-g𝐺))) = (TopSet‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
6 tngtset.3 . . 3 𝐽 = (MetOpen‘𝐷)
7 tngtset.2 . . . . . 6 𝐷 = (dist‘𝑇)
8 tngbas.t . . . . . . 7 𝑇 = (𝐺 toNrmGrp 𝑁)
9 eqid 2798 . . . . . . 7 (-g𝐺) = (-g𝐺)
108, 9tngds 23295 . . . . . 6 (𝑁𝑊 → (𝑁 ∘ (-g𝐺)) = (dist‘𝑇))
117, 10eqtr4id 2852 . . . . 5 (𝑁𝑊𝐷 = (𝑁 ∘ (-g𝐺)))
1211adantl 485 . . . 4 ((𝐺𝑉𝑁𝑊) → 𝐷 = (𝑁 ∘ (-g𝐺)))
1312fveq2d 6659 . . 3 ((𝐺𝑉𝑁𝑊) → (MetOpen‘𝐷) = (MetOpen‘(𝑁 ∘ (-g𝐺))))
146, 13syl5eq 2845 . 2 ((𝐺𝑉𝑁𝑊) → 𝐽 = (MetOpen‘(𝑁 ∘ (-g𝐺))))
15 eqid 2798 . . . 4 (𝑁 ∘ (-g𝐺)) = (𝑁 ∘ (-g𝐺))
16 eqid 2798 . . . 4 (MetOpen‘(𝑁 ∘ (-g𝐺))) = (MetOpen‘(𝑁 ∘ (-g𝐺)))
178, 9, 15, 16tngval 23286 . . 3 ((𝐺𝑉𝑁𝑊) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
1817fveq2d 6659 . 2 ((𝐺𝑉𝑁𝑊) → (TopSet‘𝑇) = (TopSet‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩)))
195, 14, 183eqtr4a 2859 1 ((𝐺𝑉𝑁𝑊) → 𝐽 = (TopSet‘𝑇))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3442  ⟨cop 4534   ∘ ccom 5527  ‘cfv 6332  (class class class)co 7145  ndxcnx 16492   sSet csts 16493  TopSetcts 16583  distcds 16586  -gcsg 18117  MetOpencmopn 20102   toNrmGrp ctng 23226 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-z 11990  df-dec 12107  df-ndx 16498  df-slot 16499  df-sets 16502  df-tset 16596  df-ds 16599  df-tng 23232 This theorem is referenced by:  tngtopn  23297
 Copyright terms: Public domain W3C validator