Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tngtset | Structured version Visualization version GIF version |
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
tngtset.2 | ⊢ 𝐷 = (dist‘𝑇) |
tngtset.3 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
tngtset | ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝐽 = (TopSet‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7375 | . . 3 ⊢ (𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) ∈ V | |
2 | fvex 6843 | . . 3 ⊢ (MetOpen‘(𝑁 ∘ (-g‘𝐺))) ∈ V | |
3 | tsetid 17161 | . . . 4 ⊢ TopSet = Slot (TopSet‘ndx) | |
4 | 3 | setsid 17007 | . . 3 ⊢ (((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) ∈ V ∧ (MetOpen‘(𝑁 ∘ (-g‘𝐺))) ∈ V) → (MetOpen‘(𝑁 ∘ (-g‘𝐺))) = (TopSet‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉))) |
5 | 1, 2, 4 | mp2an 690 | . 2 ⊢ (MetOpen‘(𝑁 ∘ (-g‘𝐺))) = (TopSet‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
6 | tngtset.3 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
7 | tngtset.2 | . . . . . 6 ⊢ 𝐷 = (dist‘𝑇) | |
8 | tngbas.t | . . . . . . 7 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
9 | eqid 2737 | . . . . . . 7 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
10 | 8, 9 | tngds 23917 | . . . . . 6 ⊢ (𝑁 ∈ 𝑊 → (𝑁 ∘ (-g‘𝐺)) = (dist‘𝑇)) |
11 | 7, 10 | eqtr4id 2796 | . . . . 5 ⊢ (𝑁 ∈ 𝑊 → 𝐷 = (𝑁 ∘ (-g‘𝐺))) |
12 | 11 | adantl 483 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝐷 = (𝑁 ∘ (-g‘𝐺))) |
13 | 12 | fveq2d 6834 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (MetOpen‘𝐷) = (MetOpen‘(𝑁 ∘ (-g‘𝐺)))) |
14 | 6, 13 | eqtrid 2789 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝐽 = (MetOpen‘(𝑁 ∘ (-g‘𝐺)))) |
15 | eqid 2737 | . . . 4 ⊢ (𝑁 ∘ (-g‘𝐺)) = (𝑁 ∘ (-g‘𝐺)) | |
16 | eqid 2737 | . . . 4 ⊢ (MetOpen‘(𝑁 ∘ (-g‘𝐺))) = (MetOpen‘(𝑁 ∘ (-g‘𝐺))) | |
17 | 8, 9, 15, 16 | tngval 23901 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
18 | 17 | fveq2d 6834 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → (TopSet‘𝑇) = (TopSet‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉))) |
19 | 5, 14, 18 | 3eqtr4a 2803 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊) → 𝐽 = (TopSet‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 Vcvv 3442 〈cop 4584 ∘ ccom 5629 ‘cfv 6484 (class class class)co 7342 sSet csts 16962 ndxcnx 16992 TopSetcts 17066 distcds 17069 -gcsg 18676 MetOpencmopn 20693 toNrmGrp ctng 23840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-7 12147 df-8 12148 df-9 12149 df-n0 12340 df-z 12426 df-dec 12544 df-sets 16963 df-slot 16981 df-ndx 16993 df-tset 17079 df-ds 17082 df-tng 23846 |
This theorem is referenced by: tngtopn 23920 |
Copyright terms: Public domain | W3C validator |