![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposf1o2 | Structured version Visualization version GIF version |
Description: Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposf1o2 | ⊢ (Rel 𝐴 → (𝐹:𝐴–1-1-onto→𝐵 → tpos 𝐹:◡𝐴–1-1-onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposf12 8256 | . . 3 ⊢ (Rel 𝐴 → (𝐹:𝐴–1-1→𝐵 → tpos 𝐹:◡𝐴–1-1→𝐵)) | |
2 | tposfo2 8254 | . . 3 ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) | |
3 | 1, 2 | anim12d 608 | . 2 ⊢ (Rel 𝐴 → ((𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) → (tpos 𝐹:◡𝐴–1-1→𝐵 ∧ tpos 𝐹:◡𝐴–onto→𝐵))) |
4 | df-f1o 6555 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
5 | df-f1o 6555 | . 2 ⊢ (tpos 𝐹:◡𝐴–1-1-onto→𝐵 ↔ (tpos 𝐹:◡𝐴–1-1→𝐵 ∧ tpos 𝐹:◡𝐴–onto→𝐵)) | |
6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (Rel 𝐴 → (𝐹:𝐴–1-1-onto→𝐵 → tpos 𝐹:◡𝐴–1-1-onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ◡ccnv 5677 Rel wrel 5683 –1-1→wf1 6545 –onto→wfo 6546 –1-1-onto→wf1o 6547 tpos ctpos 8230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-1st 7993 df-2nd 7994 df-tpos 8231 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |