MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposf1o2 Structured version   Visualization version   GIF version

Theorem tposf1o2 7999
Description: Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf1o2 (Rel 𝐴 → (𝐹:𝐴1-1-onto𝐵 → tpos 𝐹:𝐴1-1-onto𝐵))

Proof of Theorem tposf1o2
StepHypRef Expression
1 tposf12 7998 . . 3 (Rel 𝐴 → (𝐹:𝐴1-1𝐵 → tpos 𝐹:𝐴1-1𝐵))
2 tposfo2 7996 . . 3 (Rel 𝐴 → (𝐹:𝐴onto𝐵 → tpos 𝐹:𝐴onto𝐵))
31, 2anim12d 612 . 2 (Rel 𝐴 → ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) → (tpos 𝐹:𝐴1-1𝐵 ∧ tpos 𝐹:𝐴onto𝐵)))
4 df-f1o 6392 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
5 df-f1o 6392 . 2 (tpos 𝐹:𝐴1-1-onto𝐵 ↔ (tpos 𝐹:𝐴1-1𝐵 ∧ tpos 𝐹:𝐴onto𝐵))
63, 4, 53imtr4g 299 1 (Rel 𝐴 → (𝐹:𝐴1-1-onto𝐵 → tpos 𝐹:𝐴1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  ccnv 5555  Rel wrel 5561  1-1wf1 6382  ontowfo 6383  1-1-ontowf1o 6384  tpos ctpos 7972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3415  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-op 4553  df-uni 4825  df-br 5059  df-opab 5121  df-mpt 5141  df-id 5460  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-1st 7766  df-2nd 7767  df-tpos 7973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator