Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tposf1o2 | Structured version Visualization version GIF version |
Description: Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposf1o2 | ⊢ (Rel 𝐴 → (𝐹:𝐴–1-1-onto→𝐵 → tpos 𝐹:◡𝐴–1-1-onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposf12 8067 | . . 3 ⊢ (Rel 𝐴 → (𝐹:𝐴–1-1→𝐵 → tpos 𝐹:◡𝐴–1-1→𝐵)) | |
2 | tposfo2 8065 | . . 3 ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) | |
3 | 1, 2 | anim12d 609 | . 2 ⊢ (Rel 𝐴 → ((𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) → (tpos 𝐹:◡𝐴–1-1→𝐵 ∧ tpos 𝐹:◡𝐴–onto→𝐵))) |
4 | df-f1o 6440 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
5 | df-f1o 6440 | . 2 ⊢ (tpos 𝐹:◡𝐴–1-1-onto→𝐵 ↔ (tpos 𝐹:◡𝐴–1-1→𝐵 ∧ tpos 𝐹:◡𝐴–onto→𝐵)) | |
6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (Rel 𝐴 → (𝐹:𝐴–1-1-onto→𝐵 → tpos 𝐹:◡𝐴–1-1-onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ◡ccnv 5588 Rel wrel 5594 –1-1→wf1 6430 –onto→wfo 6431 –1-1-onto→wf1o 6432 tpos ctpos 8041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-1st 7831 df-2nd 7832 df-tpos 8042 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |