![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposf | Structured version Visualization version GIF version |
Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposf | ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5690 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
2 | tposf2 8249 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)⟶𝐶)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)⟶𝐶) |
4 | cnvxp 6155 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
5 | 4 | feq2i 6708 | . 2 ⊢ (tpos 𝐹:◡(𝐴 × 𝐵)⟶𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) |
6 | 3, 5 | sylib 217 | 1 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 × cxp 5670 ◡ccnv 5671 Rel wrel 5677 ⟶wf 6538 tpos ctpos 8224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-tpos 8225 |
This theorem is referenced by: tposfn 8254 mattposcl 22342 tposmap 22346 |
Copyright terms: Public domain | W3C validator |