MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposf Structured version   Visualization version   GIF version

Theorem tposf 8233
Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶)

Proof of Theorem tposf
StepHypRef Expression
1 relxp 5656 . . 3 Rel (𝐴 × 𝐵)
2 tposf2 8229 . . 3 (Rel (𝐴 × 𝐵) → (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐴 × 𝐵)⟶𝐶))
31, 2ax-mp 5 . 2 (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐴 × 𝐵)⟶𝐶)
4 cnvxp 6130 . . 3 (𝐴 × 𝐵) = (𝐵 × 𝐴)
54feq2i 6680 . 2 (tpos 𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)⟶𝐶)
63, 5sylib 218 1 (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   × cxp 5636  ccnv 5637  Rel wrel 5643  wf 6507  tpos ctpos 8204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-tpos 8205
This theorem is referenced by:  tposfn  8234  mattposcl  22340  tposmap  22344
  Copyright terms: Public domain W3C validator