![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposf | Structured version Visualization version GIF version |
Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposf | ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5694 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
2 | tposf2 8234 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)⟶𝐶)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)⟶𝐶) |
4 | cnvxp 6156 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
5 | 4 | feq2i 6709 | . 2 ⊢ (tpos 𝐹:◡(𝐴 × 𝐵)⟶𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) |
6 | 3, 5 | sylib 217 | 1 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 × cxp 5674 ◡ccnv 5675 Rel wrel 5681 ⟶wf 6539 tpos ctpos 8209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-tpos 8210 |
This theorem is referenced by: tposfn 8239 mattposcl 21954 tposmap 21958 |
Copyright terms: Public domain | W3C validator |