![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposf | Structured version Visualization version GIF version |
Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposf | ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5684 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
2 | tposf2 8230 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)⟶𝐶)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)⟶𝐶) |
4 | cnvxp 6146 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
5 | 4 | feq2i 6699 | . 2 ⊢ (tpos 𝐹:◡(𝐴 × 𝐵)⟶𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) |
6 | 3, 5 | sylib 217 | 1 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 × cxp 5664 ◡ccnv 5665 Rel wrel 5671 ⟶wf 6529 tpos ctpos 8205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fo 6539 df-fv 6541 df-tpos 8206 |
This theorem is referenced by: tposfn 8235 mattposcl 22277 tposmap 22281 |
Copyright terms: Public domain | W3C validator |