| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ucnimalem | Structured version Visualization version GIF version | ||
| Description: Reformulate the 𝐺 function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
| Ref | Expression |
|---|---|
| ucnprima.1 | ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) |
| ucnprima.2 | ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) |
| ucnprima.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) |
| ucnprima.4 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| ucnprima.5 | ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
| Ref | Expression |
|---|---|
| ucnimalem | ⊢ 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ucnprima.5 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) | |
| 2 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3451 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | op1std 7978 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (1st ‘𝑝) = 𝑥) |
| 5 | 4 | fveq2d 6862 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝐹‘(1st ‘𝑝)) = (𝐹‘𝑥)) |
| 6 | 2, 3 | op2ndd 7979 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (2nd ‘𝑝) = 𝑦) |
| 7 | 6 | fveq2d 6862 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝐹‘(2nd ‘𝑝)) = (𝐹‘𝑦)) |
| 8 | 5, 7 | opeq12d 4845 | . . 3 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉 = 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
| 9 | 8 | mpompt 7503 | . 2 ⊢ (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
| 10 | 1, 9 | eqtr4i 2755 | 1 ⊢ 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4595 ↦ cmpt 5188 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1st c1st 7966 2nd c2nd 7967 UnifOncust 24087 Cnucucn 24162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 |
| This theorem is referenced by: ucnima 24168 |
| Copyright terms: Public domain | W3C validator |