MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnimalem Structured version   Visualization version   GIF version

Theorem ucnimalem 23340
Description: Reformulate the 𝐺 function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Hypotheses
Ref Expression
ucnprima.1 (𝜑𝑈 ∈ (UnifOn‘𝑋))
ucnprima.2 (𝜑𝑉 ∈ (UnifOn‘𝑌))
ucnprima.3 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
ucnprima.4 (𝜑𝑊𝑉)
ucnprima.5 𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
Assertion
Ref Expression
ucnimalem 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
Distinct variable groups:   𝑥,𝑝,𝑦,𝐹   𝑋,𝑝,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝)   𝑈(𝑥,𝑦,𝑝)   𝐺(𝑥,𝑦,𝑝)   𝑉(𝑥,𝑦,𝑝)   𝑊(𝑥,𝑦,𝑝)   𝑌(𝑥,𝑦,𝑝)

Proof of Theorem ucnimalem
StepHypRef Expression
1 ucnprima.5 . 2 𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
2 vex 3426 . . . . . 6 𝑥 ∈ V
3 vex 3426 . . . . . 6 𝑦 ∈ V
42, 3op1std 7814 . . . . 5 (𝑝 = ⟨𝑥, 𝑦⟩ → (1st𝑝) = 𝑥)
54fveq2d 6760 . . . 4 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐹‘(1st𝑝)) = (𝐹𝑥))
62, 3op2ndd 7815 . . . . 5 (𝑝 = ⟨𝑥, 𝑦⟩ → (2nd𝑝) = 𝑦)
76fveq2d 6760 . . . 4 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐹‘(2nd𝑝)) = (𝐹𝑦))
85, 7opeq12d 4809 . . 3 (𝑝 = ⟨𝑥, 𝑦⟩ → ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
98mpompt 7366 . 2 (𝑝 ∈ (𝑋 × 𝑋) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩) = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
101, 9eqtr4i 2769 1 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cop 4564  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  UnifOncust 23259   Cnucucn 23335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805
This theorem is referenced by:  ucnima  23341
  Copyright terms: Public domain W3C validator