| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ucnimalem | Structured version Visualization version GIF version | ||
| Description: Reformulate the 𝐺 function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
| Ref | Expression |
|---|---|
| ucnprima.1 | ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) |
| ucnprima.2 | ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) |
| ucnprima.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) |
| ucnprima.4 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| ucnprima.5 | ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
| Ref | Expression |
|---|---|
| ucnimalem | ⊢ 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ucnprima.5 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) | |
| 2 | vex 3438 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3438 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | op1std 7926 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (1st ‘𝑝) = 𝑥) |
| 5 | 4 | fveq2d 6821 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝐹‘(1st ‘𝑝)) = (𝐹‘𝑥)) |
| 6 | 2, 3 | op2ndd 7927 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (2nd ‘𝑝) = 𝑦) |
| 7 | 6 | fveq2d 6821 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝐹‘(2nd ‘𝑝)) = (𝐹‘𝑦)) |
| 8 | 5, 7 | opeq12d 4831 | . . 3 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉 = 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
| 9 | 8 | mpompt 7455 | . 2 ⊢ (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
| 10 | 1, 9 | eqtr4i 2756 | 1 ⊢ 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 〈cop 4580 ↦ cmpt 5170 × cxp 5612 ‘cfv 6477 (class class class)co 7341 ∈ cmpo 7343 1st c1st 7914 2nd c2nd 7915 UnifOncust 24108 Cnucucn 24182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fv 6485 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 |
| This theorem is referenced by: ucnima 24188 |
| Copyright terms: Public domain | W3C validator |