| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ucnimalem | Structured version Visualization version GIF version | ||
| Description: Reformulate the 𝐺 function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
| Ref | Expression |
|---|---|
| ucnprima.1 | ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) |
| ucnprima.2 | ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) |
| ucnprima.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) |
| ucnprima.4 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| ucnprima.5 | ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
| Ref | Expression |
|---|---|
| ucnimalem | ⊢ 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ucnprima.5 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) | |
| 2 | vex 3467 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3467 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | op1std 8006 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (1st ‘𝑝) = 𝑥) |
| 5 | 4 | fveq2d 6890 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝐹‘(1st ‘𝑝)) = (𝐹‘𝑥)) |
| 6 | 2, 3 | op2ndd 8007 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (2nd ‘𝑝) = 𝑦) |
| 7 | 6 | fveq2d 6890 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝐹‘(2nd ‘𝑝)) = (𝐹‘𝑦)) |
| 8 | 5, 7 | opeq12d 4861 | . . 3 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉 = 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
| 9 | 8 | mpompt 7529 | . 2 ⊢ (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
| 10 | 1, 9 | eqtr4i 2760 | 1 ⊢ 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 〈cop 4612 ↦ cmpt 5205 × cxp 5663 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 1st c1st 7994 2nd c2nd 7995 UnifOncust 24154 Cnucucn 24229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fv 6549 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 |
| This theorem is referenced by: ucnima 24235 |
| Copyright terms: Public domain | W3C validator |