Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ucnimalem | Structured version Visualization version GIF version |
Description: Reformulate the 𝐺 function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
Ref | Expression |
---|---|
ucnprima.1 | ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) |
ucnprima.2 | ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) |
ucnprima.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) |
ucnprima.4 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
ucnprima.5 | ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
Ref | Expression |
---|---|
ucnimalem | ⊢ 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ucnprima.5 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) | |
2 | vex 3436 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3436 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | op1std 7841 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (1st ‘𝑝) = 𝑥) |
5 | 4 | fveq2d 6778 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝐹‘(1st ‘𝑝)) = (𝐹‘𝑥)) |
6 | 2, 3 | op2ndd 7842 | . . . . 5 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (2nd ‘𝑝) = 𝑦) |
7 | 6 | fveq2d 6778 | . . . 4 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝐹‘(2nd ‘𝑝)) = (𝐹‘𝑦)) |
8 | 5, 7 | opeq12d 4812 | . . 3 ⊢ (𝑝 = 〈𝑥, 𝑦〉 → 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉 = 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
9 | 8 | mpompt 7388 | . 2 ⊢ (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) |
10 | 1, 9 | eqtr4i 2769 | 1 ⊢ 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 〈cop 4567 ↦ cmpt 5157 × cxp 5587 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 1st c1st 7829 2nd c2nd 7830 UnifOncust 23351 Cnucucn 23427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 |
This theorem is referenced by: ucnima 23433 |
Copyright terms: Public domain | W3C validator |