MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnimalem Structured version   Visualization version   GIF version

Theorem ucnimalem 23785
Description: Reformulate the 𝐺 function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Hypotheses
Ref Expression
ucnprima.1 (πœ‘ β†’ π‘ˆ ∈ (UnifOnβ€˜π‘‹))
ucnprima.2 (πœ‘ β†’ 𝑉 ∈ (UnifOnβ€˜π‘Œ))
ucnprima.3 (πœ‘ β†’ 𝐹 ∈ (π‘ˆ Cnu𝑉))
ucnprima.4 (πœ‘ β†’ π‘Š ∈ 𝑉)
ucnprima.5 𝐺 = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ ⟨(πΉβ€˜π‘₯), (πΉβ€˜π‘¦)⟩)
Assertion
Ref Expression
ucnimalem 𝐺 = (𝑝 ∈ (𝑋 Γ— 𝑋) ↦ ⟨(πΉβ€˜(1st β€˜π‘)), (πΉβ€˜(2nd β€˜π‘))⟩)
Distinct variable groups:   π‘₯,𝑝,𝑦,𝐹   𝑋,𝑝,π‘₯,𝑦
Allowed substitution hints:   πœ‘(π‘₯,𝑦,𝑝)   π‘ˆ(π‘₯,𝑦,𝑝)   𝐺(π‘₯,𝑦,𝑝)   𝑉(π‘₯,𝑦,𝑝)   π‘Š(π‘₯,𝑦,𝑝)   π‘Œ(π‘₯,𝑦,𝑝)

Proof of Theorem ucnimalem
StepHypRef Expression
1 ucnprima.5 . 2 𝐺 = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ ⟨(πΉβ€˜π‘₯), (πΉβ€˜π‘¦)⟩)
2 vex 3479 . . . . . 6 π‘₯ ∈ V
3 vex 3479 . . . . . 6 𝑦 ∈ V
42, 3op1std 7985 . . . . 5 (𝑝 = ⟨π‘₯, π‘¦βŸ© β†’ (1st β€˜π‘) = π‘₯)
54fveq2d 6896 . . . 4 (𝑝 = ⟨π‘₯, π‘¦βŸ© β†’ (πΉβ€˜(1st β€˜π‘)) = (πΉβ€˜π‘₯))
62, 3op2ndd 7986 . . . . 5 (𝑝 = ⟨π‘₯, π‘¦βŸ© β†’ (2nd β€˜π‘) = 𝑦)
76fveq2d 6896 . . . 4 (𝑝 = ⟨π‘₯, π‘¦βŸ© β†’ (πΉβ€˜(2nd β€˜π‘)) = (πΉβ€˜π‘¦))
85, 7opeq12d 4882 . . 3 (𝑝 = ⟨π‘₯, π‘¦βŸ© β†’ ⟨(πΉβ€˜(1st β€˜π‘)), (πΉβ€˜(2nd β€˜π‘))⟩ = ⟨(πΉβ€˜π‘₯), (πΉβ€˜π‘¦)⟩)
98mpompt 7522 . 2 (𝑝 ∈ (𝑋 Γ— 𝑋) ↦ ⟨(πΉβ€˜(1st β€˜π‘)), (πΉβ€˜(2nd β€˜π‘))⟩) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ ⟨(πΉβ€˜π‘₯), (πΉβ€˜π‘¦)⟩)
101, 9eqtr4i 2764 1 𝐺 = (𝑝 ∈ (𝑋 Γ— 𝑋) ↦ ⟨(πΉβ€˜(1st β€˜π‘)), (πΉβ€˜(2nd β€˜π‘))⟩)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  βŸ¨cop 4635   ↦ cmpt 5232   Γ— cxp 5675  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  1st c1st 7973  2nd c2nd 7974  UnifOncust 23704   Cnucucn 23780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fv 6552  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976
This theorem is referenced by:  ucnima  23786
  Copyright terms: Public domain W3C validator