![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ucnimalem | Structured version Visualization version GIF version |
Description: Reformulate the πΊ function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
Ref | Expression |
---|---|
ucnprima.1 | β’ (π β π β (UnifOnβπ)) |
ucnprima.2 | β’ (π β π β (UnifOnβπ)) |
ucnprima.3 | β’ (π β πΉ β (π Cnuπ)) |
ucnprima.4 | β’ (π β π β π) |
ucnprima.5 | β’ πΊ = (π₯ β π, π¦ β π β¦ β¨(πΉβπ₯), (πΉβπ¦)β©) |
Ref | Expression |
---|---|
ucnimalem | β’ πΊ = (π β (π Γ π) β¦ β¨(πΉβ(1st βπ)), (πΉβ(2nd βπ))β©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ucnprima.5 | . 2 β’ πΊ = (π₯ β π, π¦ β π β¦ β¨(πΉβπ₯), (πΉβπ¦)β©) | |
2 | vex 3479 | . . . . . 6 β’ π₯ β V | |
3 | vex 3479 | . . . . . 6 β’ π¦ β V | |
4 | 2, 3 | op1std 7985 | . . . . 5 β’ (π = β¨π₯, π¦β© β (1st βπ) = π₯) |
5 | 4 | fveq2d 6896 | . . . 4 β’ (π = β¨π₯, π¦β© β (πΉβ(1st βπ)) = (πΉβπ₯)) |
6 | 2, 3 | op2ndd 7986 | . . . . 5 β’ (π = β¨π₯, π¦β© β (2nd βπ) = π¦) |
7 | 6 | fveq2d 6896 | . . . 4 β’ (π = β¨π₯, π¦β© β (πΉβ(2nd βπ)) = (πΉβπ¦)) |
8 | 5, 7 | opeq12d 4882 | . . 3 β’ (π = β¨π₯, π¦β© β β¨(πΉβ(1st βπ)), (πΉβ(2nd βπ))β© = β¨(πΉβπ₯), (πΉβπ¦)β©) |
9 | 8 | mpompt 7522 | . 2 β’ (π β (π Γ π) β¦ β¨(πΉβ(1st βπ)), (πΉβ(2nd βπ))β©) = (π₯ β π, π¦ β π β¦ β¨(πΉβπ₯), (πΉβπ¦)β©) |
10 | 1, 9 | eqtr4i 2764 | 1 β’ πΊ = (π β (π Γ π) β¦ β¨(πΉβ(1st βπ)), (πΉβ(2nd βπ))β©) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 β¨cop 4635 β¦ cmpt 5232 Γ cxp 5675 βcfv 6544 (class class class)co 7409 β cmpo 7411 1st c1st 7973 2nd c2nd 7974 UnifOncust 23704 Cnucucn 23780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 |
This theorem is referenced by: ucnima 23786 |
Copyright terms: Public domain | W3C validator |