MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnimalem Structured version   Visualization version   GIF version

Theorem ucnimalem 23432
Description: Reformulate the 𝐺 function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Hypotheses
Ref Expression
ucnprima.1 (𝜑𝑈 ∈ (UnifOn‘𝑋))
ucnprima.2 (𝜑𝑉 ∈ (UnifOn‘𝑌))
ucnprima.3 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
ucnprima.4 (𝜑𝑊𝑉)
ucnprima.5 𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
Assertion
Ref Expression
ucnimalem 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
Distinct variable groups:   𝑥,𝑝,𝑦,𝐹   𝑋,𝑝,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝)   𝑈(𝑥,𝑦,𝑝)   𝐺(𝑥,𝑦,𝑝)   𝑉(𝑥,𝑦,𝑝)   𝑊(𝑥,𝑦,𝑝)   𝑌(𝑥,𝑦,𝑝)

Proof of Theorem ucnimalem
StepHypRef Expression
1 ucnprima.5 . 2 𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
2 vex 3436 . . . . . 6 𝑥 ∈ V
3 vex 3436 . . . . . 6 𝑦 ∈ V
42, 3op1std 7841 . . . . 5 (𝑝 = ⟨𝑥, 𝑦⟩ → (1st𝑝) = 𝑥)
54fveq2d 6778 . . . 4 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐹‘(1st𝑝)) = (𝐹𝑥))
62, 3op2ndd 7842 . . . . 5 (𝑝 = ⟨𝑥, 𝑦⟩ → (2nd𝑝) = 𝑦)
76fveq2d 6778 . . . 4 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐹‘(2nd𝑝)) = (𝐹𝑦))
85, 7opeq12d 4812 . . 3 (𝑝 = ⟨𝑥, 𝑦⟩ → ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
98mpompt 7388 . 2 (𝑝 ∈ (𝑋 × 𝑋) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩) = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
101, 9eqtr4i 2769 1 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cop 4567  cmpt 5157   × cxp 5587  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  UnifOncust 23351   Cnucucn 23427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832
This theorem is referenced by:  ucnima  23433
  Copyright terms: Public domain W3C validator