| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrfisbase | Structured version Visualization version GIF version | ||
| Description: Induction base for fusgrfis 29306. Main work is done in uhgr0v0e 29214. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 23-Oct-2020.) |
| Ref | Expression |
|---|---|
| fusgrfisbase | ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → 𝐸 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgruhgr 29162 | . . . . 5 ⊢ (〈𝑉, 𝐸〉 ∈ USGraph → 〈𝑉, 𝐸〉 ∈ UHGraph) | |
| 2 | 1 | 3ad2ant2 1134 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → 〈𝑉, 𝐸〉 ∈ UHGraph) |
| 3 | opvtxfv 28980 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
| 4 | 3 | 3ad2ant1 1133 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
| 5 | hasheq0 14267 | . . . . . . . . 9 ⊢ (𝑉 ∈ 𝑋 → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅)) | |
| 6 | 5 | biimpd 229 | . . . . . . . 8 ⊢ (𝑉 ∈ 𝑋 → ((♯‘𝑉) = 0 → 𝑉 = ∅)) |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((♯‘𝑉) = 0 → 𝑉 = ∅)) |
| 8 | 7 | a1d 25 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (〈𝑉, 𝐸〉 ∈ USGraph → ((♯‘𝑉) = 0 → 𝑉 = ∅))) |
| 9 | 8 | 3imp 1110 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → 𝑉 = ∅) |
| 10 | 4, 9 | eqtrd 2766 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → (Vtx‘〈𝑉, 𝐸〉) = ∅) |
| 11 | eqid 2731 | . . . . 5 ⊢ (Vtx‘〈𝑉, 𝐸〉) = (Vtx‘〈𝑉, 𝐸〉) | |
| 12 | eqid 2731 | . . . . 5 ⊢ (Edg‘〈𝑉, 𝐸〉) = (Edg‘〈𝑉, 𝐸〉) | |
| 13 | 11, 12 | uhgr0v0e 29214 | . . . 4 ⊢ ((〈𝑉, 𝐸〉 ∈ UHGraph ∧ (Vtx‘〈𝑉, 𝐸〉) = ∅) → (Edg‘〈𝑉, 𝐸〉) = ∅) |
| 14 | 2, 10, 13 | syl2anc 584 | . . 3 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → (Edg‘〈𝑉, 𝐸〉) = ∅) |
| 15 | 0fi 8964 | . . 3 ⊢ ∅ ∈ Fin | |
| 16 | 14, 15 | eqeltrdi 2839 | . 2 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → (Edg‘〈𝑉, 𝐸〉) ∈ Fin) |
| 17 | eqid 2731 | . . . . 5 ⊢ (iEdg‘〈𝑉, 𝐸〉) = (iEdg‘〈𝑉, 𝐸〉) | |
| 18 | 17, 12 | usgredgffibi 29300 | . . . 4 ⊢ (〈𝑉, 𝐸〉 ∈ USGraph → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ (iEdg‘〈𝑉, 𝐸〉) ∈ Fin)) |
| 19 | 18 | 3ad2ant2 1134 | . . 3 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ (iEdg‘〈𝑉, 𝐸〉) ∈ Fin)) |
| 20 | opiedgfv 28983 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
| 21 | 20 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
| 22 | 21 | eleq1d 2816 | . . 3 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → ((iEdg‘〈𝑉, 𝐸〉) ∈ Fin ↔ 𝐸 ∈ Fin)) |
| 23 | 19, 22 | bitrd 279 | . 2 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ 𝐸 ∈ Fin)) |
| 24 | 16, 23 | mpbid 232 | 1 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → 𝐸 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∅c0 4283 〈cop 4582 ‘cfv 6481 Fincfn 8869 0cc0 11003 ♯chash 14234 Vtxcvtx 28972 iEdgciedg 28973 Edgcedg 29023 UHGraphcuhgr 29032 USGraphcusgr 29125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-hash 14235 df-vtx 28974 df-iedg 28975 df-edg 29024 df-uhgr 29034 df-upgr 29058 df-uspgr 29126 df-usgr 29127 |
| This theorem is referenced by: fusgrfis 29306 |
| Copyright terms: Public domain | W3C validator |