Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrfisbase Structured version   Visualization version   GIF version

Theorem fusgrfisbase 27116
 Description: Induction base for fusgrfis 27118. Main work is done in uhgr0v0e 27026. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 23-Oct-2020.)
Assertion
Ref Expression
fusgrfisbase (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (♯‘𝑉) = 0) → 𝐸 ∈ Fin)

Proof of Theorem fusgrfisbase
StepHypRef Expression
1 usgruhgr 26974 . . . . 5 (⟨𝑉, 𝐸⟩ ∈ USGraph → ⟨𝑉, 𝐸⟩ ∈ UHGraph)
213ad2ant2 1131 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (♯‘𝑉) = 0) → ⟨𝑉, 𝐸⟩ ∈ UHGraph)
3 opvtxfv 26795 . . . . . 6 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
433ad2ant1 1130 . . . . 5 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (♯‘𝑉) = 0) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
5 hasheq0 13727 . . . . . . . . 9 (𝑉𝑋 → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
65biimpd 232 . . . . . . . 8 (𝑉𝑋 → ((♯‘𝑉) = 0 → 𝑉 = ∅))
76adantr 484 . . . . . . 7 ((𝑉𝑋𝐸𝑌) → ((♯‘𝑉) = 0 → 𝑉 = ∅))
87a1d 25 . . . . . 6 ((𝑉𝑋𝐸𝑌) → (⟨𝑉, 𝐸⟩ ∈ USGraph → ((♯‘𝑉) = 0 → 𝑉 = ∅)))
983imp 1108 . . . . 5 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (♯‘𝑉) = 0) → 𝑉 = ∅)
104, 9eqtrd 2859 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (♯‘𝑉) = 0) → (Vtx‘⟨𝑉, 𝐸⟩) = ∅)
11 eqid 2824 . . . . 5 (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩)
12 eqid 2824 . . . . 5 (Edg‘⟨𝑉, 𝐸⟩) = (Edg‘⟨𝑉, 𝐸⟩)
1311, 12uhgr0v0e 27026 . . . 4 ((⟨𝑉, 𝐸⟩ ∈ UHGraph ∧ (Vtx‘⟨𝑉, 𝐸⟩) = ∅) → (Edg‘⟨𝑉, 𝐸⟩) = ∅)
142, 10, 13syl2anc 587 . . 3 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (♯‘𝑉) = 0) → (Edg‘⟨𝑉, 𝐸⟩) = ∅)
15 0fin 8739 . . 3 ∅ ∈ Fin
1614, 15eqeltrdi 2924 . 2 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (♯‘𝑉) = 0) → (Edg‘⟨𝑉, 𝐸⟩) ∈ Fin)
17 eqid 2824 . . . . 5 (iEdg‘⟨𝑉, 𝐸⟩) = (iEdg‘⟨𝑉, 𝐸⟩)
1817, 12usgredgffibi 27112 . . . 4 (⟨𝑉, 𝐸⟩ ∈ USGraph → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ (iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin))
19183ad2ant2 1131 . . 3 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (♯‘𝑉) = 0) → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ (iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin))
20 opiedgfv 26798 . . . . 5 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
21203ad2ant1 1130 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (♯‘𝑉) = 0) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
2221eleq1d 2900 . . 3 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (♯‘𝑉) = 0) → ((iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ 𝐸 ∈ Fin))
2319, 22bitrd 282 . 2 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (♯‘𝑉) = 0) → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ 𝐸 ∈ Fin))
2416, 23mpbid 235 1 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ USGraph ∧ (♯‘𝑉) = 0) → 𝐸 ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ∅c0 4276  ⟨cop 4556  ‘cfv 6344  Fincfn 8501  0cc0 10531  ♯chash 13693  Vtxcvtx 26787  iEdgciedg 26788  Edgcedg 26838  UHGraphcuhgr 26847  USGraphcusgr 26940 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11695  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893  df-hash 13694  df-vtx 26789  df-iedg 26790  df-edg 26839  df-uhgr 26849  df-upgr 26873  df-uspgr 26941  df-usgr 26942 This theorem is referenced by:  fusgrfis  27118
 Copyright terms: Public domain W3C validator