| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrfisbase | Structured version Visualization version GIF version | ||
| Description: Induction base for fusgrfis 29293. Main work is done in uhgr0v0e 29201. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 23-Oct-2020.) |
| Ref | Expression |
|---|---|
| fusgrfisbase | ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → 𝐸 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgruhgr 29149 | . . . . 5 ⊢ (〈𝑉, 𝐸〉 ∈ USGraph → 〈𝑉, 𝐸〉 ∈ UHGraph) | |
| 2 | 1 | 3ad2ant2 1134 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → 〈𝑉, 𝐸〉 ∈ UHGraph) |
| 3 | opvtxfv 28967 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
| 4 | 3 | 3ad2ant1 1133 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
| 5 | hasheq0 14288 | . . . . . . . . 9 ⊢ (𝑉 ∈ 𝑋 → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅)) | |
| 6 | 5 | biimpd 229 | . . . . . . . 8 ⊢ (𝑉 ∈ 𝑋 → ((♯‘𝑉) = 0 → 𝑉 = ∅)) |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((♯‘𝑉) = 0 → 𝑉 = ∅)) |
| 8 | 7 | a1d 25 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (〈𝑉, 𝐸〉 ∈ USGraph → ((♯‘𝑉) = 0 → 𝑉 = ∅))) |
| 9 | 8 | 3imp 1110 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → 𝑉 = ∅) |
| 10 | 4, 9 | eqtrd 2764 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → (Vtx‘〈𝑉, 𝐸〉) = ∅) |
| 11 | eqid 2729 | . . . . 5 ⊢ (Vtx‘〈𝑉, 𝐸〉) = (Vtx‘〈𝑉, 𝐸〉) | |
| 12 | eqid 2729 | . . . . 5 ⊢ (Edg‘〈𝑉, 𝐸〉) = (Edg‘〈𝑉, 𝐸〉) | |
| 13 | 11, 12 | uhgr0v0e 29201 | . . . 4 ⊢ ((〈𝑉, 𝐸〉 ∈ UHGraph ∧ (Vtx‘〈𝑉, 𝐸〉) = ∅) → (Edg‘〈𝑉, 𝐸〉) = ∅) |
| 14 | 2, 10, 13 | syl2anc 584 | . . 3 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → (Edg‘〈𝑉, 𝐸〉) = ∅) |
| 15 | 0fi 8974 | . . 3 ⊢ ∅ ∈ Fin | |
| 16 | 14, 15 | eqeltrdi 2836 | . 2 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → (Edg‘〈𝑉, 𝐸〉) ∈ Fin) |
| 17 | eqid 2729 | . . . . 5 ⊢ (iEdg‘〈𝑉, 𝐸〉) = (iEdg‘〈𝑉, 𝐸〉) | |
| 18 | 17, 12 | usgredgffibi 29287 | . . . 4 ⊢ (〈𝑉, 𝐸〉 ∈ USGraph → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ (iEdg‘〈𝑉, 𝐸〉) ∈ Fin)) |
| 19 | 18 | 3ad2ant2 1134 | . . 3 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ (iEdg‘〈𝑉, 𝐸〉) ∈ Fin)) |
| 20 | opiedgfv 28970 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
| 21 | 20 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
| 22 | 21 | eleq1d 2813 | . . 3 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → ((iEdg‘〈𝑉, 𝐸〉) ∈ Fin ↔ 𝐸 ∈ Fin)) |
| 23 | 19, 22 | bitrd 279 | . 2 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ 𝐸 ∈ Fin)) |
| 24 | 16, 23 | mpbid 232 | 1 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → 𝐸 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∅c0 4286 〈cop 4585 ‘cfv 6486 Fincfn 8879 0cc0 11028 ♯chash 14255 Vtxcvtx 28959 iEdgciedg 28960 Edgcedg 29010 UHGraphcuhgr 29019 USGraphcusgr 29112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-hash 14256 df-vtx 28961 df-iedg 28962 df-edg 29011 df-uhgr 29021 df-upgr 29045 df-uspgr 29113 df-usgr 29114 |
| This theorem is referenced by: fusgrfis 29293 |
| Copyright terms: Public domain | W3C validator |