![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrfisbase | Structured version Visualization version GIF version |
Description: Induction base for fusgrfis 29373. Main work is done in uhgr0v0e 29281. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 23-Oct-2020.) |
Ref | Expression |
---|---|
fusgrfisbase | ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → 𝐸 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgruhgr 29229 | . . . . 5 ⊢ (〈𝑉, 𝐸〉 ∈ USGraph → 〈𝑉, 𝐸〉 ∈ UHGraph) | |
2 | 1 | 3ad2ant2 1135 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → 〈𝑉, 𝐸〉 ∈ UHGraph) |
3 | opvtxfv 29047 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
4 | 3 | 3ad2ant1 1134 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
5 | hasheq0 14408 | . . . . . . . . 9 ⊢ (𝑉 ∈ 𝑋 → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅)) | |
6 | 5 | biimpd 229 | . . . . . . . 8 ⊢ (𝑉 ∈ 𝑋 → ((♯‘𝑉) = 0 → 𝑉 = ∅)) |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((♯‘𝑉) = 0 → 𝑉 = ∅)) |
8 | 7 | a1d 25 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (〈𝑉, 𝐸〉 ∈ USGraph → ((♯‘𝑉) = 0 → 𝑉 = ∅))) |
9 | 8 | 3imp 1111 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → 𝑉 = ∅) |
10 | 4, 9 | eqtrd 2777 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → (Vtx‘〈𝑉, 𝐸〉) = ∅) |
11 | eqid 2737 | . . . . 5 ⊢ (Vtx‘〈𝑉, 𝐸〉) = (Vtx‘〈𝑉, 𝐸〉) | |
12 | eqid 2737 | . . . . 5 ⊢ (Edg‘〈𝑉, 𝐸〉) = (Edg‘〈𝑉, 𝐸〉) | |
13 | 11, 12 | uhgr0v0e 29281 | . . . 4 ⊢ ((〈𝑉, 𝐸〉 ∈ UHGraph ∧ (Vtx‘〈𝑉, 𝐸〉) = ∅) → (Edg‘〈𝑉, 𝐸〉) = ∅) |
14 | 2, 10, 13 | syl2anc 584 | . . 3 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → (Edg‘〈𝑉, 𝐸〉) = ∅) |
15 | 0fi 9090 | . . 3 ⊢ ∅ ∈ Fin | |
16 | 14, 15 | eqeltrdi 2849 | . 2 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → (Edg‘〈𝑉, 𝐸〉) ∈ Fin) |
17 | eqid 2737 | . . . . 5 ⊢ (iEdg‘〈𝑉, 𝐸〉) = (iEdg‘〈𝑉, 𝐸〉) | |
18 | 17, 12 | usgredgffibi 29367 | . . . 4 ⊢ (〈𝑉, 𝐸〉 ∈ USGraph → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ (iEdg‘〈𝑉, 𝐸〉) ∈ Fin)) |
19 | 18 | 3ad2ant2 1135 | . . 3 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ (iEdg‘〈𝑉, 𝐸〉) ∈ Fin)) |
20 | opiedgfv 29050 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
21 | 20 | 3ad2ant1 1134 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
22 | 21 | eleq1d 2826 | . . 3 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → ((iEdg‘〈𝑉, 𝐸〉) ∈ Fin ↔ 𝐸 ∈ Fin)) |
23 | 19, 22 | bitrd 279 | . 2 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → ((Edg‘〈𝑉, 𝐸〉) ∈ Fin ↔ 𝐸 ∈ Fin)) |
24 | 16, 23 | mpbid 232 | 1 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 〈𝑉, 𝐸〉 ∈ USGraph ∧ (♯‘𝑉) = 0) → 𝐸 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ∅c0 4342 〈cop 4640 ‘cfv 6569 Fincfn 8993 0cc0 11162 ♯chash 14375 Vtxcvtx 29039 iEdgciedg 29040 Edgcedg 29090 UHGraphcuhgr 29099 USGraphcusgr 29192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-hash 14376 df-vtx 29041 df-iedg 29042 df-edg 29091 df-uhgr 29101 df-upgr 29125 df-uspgr 29193 df-usgr 29194 |
This theorem is referenced by: fusgrfis 29373 |
Copyright terms: Public domain | W3C validator |