MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrvtxedgiedgb Structured version   Visualization version   GIF version

Theorem uhgrvtxedgiedgb 27506
Description: In a hypergraph, a vertex is incident with an edge iff it is contained in an element of the range of the edge function. (Contributed by AV, 24-Dec-2020.) (Revised by AV, 6-Jul-2022.)
Hypotheses
Ref Expression
uhgrvtxedgiedgb.i 𝐼 = (iEdg‘𝐺)
uhgrvtxedgiedgb.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgrvtxedgiedgb ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖) ↔ ∃𝑒𝐸 𝑈𝑒))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐼,𝑖   𝑈,𝑒,𝑖
Allowed substitution hints:   𝐸(𝑖)   𝐺(𝑒,𝑖)   𝑉(𝑒,𝑖)

Proof of Theorem uhgrvtxedgiedgb
StepHypRef Expression
1 edgval 27419 . . . . . . 7 (Edg‘𝐺) = ran (iEdg‘𝐺)
21a1i 11 . . . . . 6 (𝐺 ∈ UHGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
3 uhgrvtxedgiedgb.e . . . . . 6 𝐸 = (Edg‘𝐺)
4 uhgrvtxedgiedgb.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
54rneqi 5846 . . . . . 6 ran 𝐼 = ran (iEdg‘𝐺)
62, 3, 53eqtr4g 2803 . . . . 5 (𝐺 ∈ UHGraph → 𝐸 = ran 𝐼)
76rexeqdv 3349 . . . 4 (𝐺 ∈ UHGraph → (∃𝑒𝐸 𝑈𝑒 ↔ ∃𝑒 ∈ ran 𝐼 𝑈𝑒))
84uhgrfun 27436 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐼)
98funfnd 6465 . . . . 5 (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼)
10 eleq2 2827 . . . . . 6 (𝑒 = (𝐼𝑖) → (𝑈𝑒𝑈 ∈ (𝐼𝑖)))
1110rexrn 6963 . . . . 5 (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
129, 11syl 17 . . . 4 (𝐺 ∈ UHGraph → (∃𝑒 ∈ ran 𝐼 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
137, 12bitrd 278 . . 3 (𝐺 ∈ UHGraph → (∃𝑒𝐸 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
1413adantr 481 . 2 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑒𝐸 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
1514bicomd 222 1 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖) ↔ ∃𝑒𝐸 𝑈𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  dom cdm 5589  ran crn 5590   Fn wfn 6428  cfv 6433  iEdgciedg 27367  Edgcedg 27417  UHGraphcuhgr 27426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-edg 27418  df-uhgr 27428
This theorem is referenced by:  vtxduhgr0edgnel  27861
  Copyright terms: Public domain W3C validator