MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrvtxedgiedgb Structured version   Visualization version   GIF version

Theorem uhgrvtxedgiedgb 29070
Description: In a hypergraph, a vertex is incident with an edge iff it is contained in an element of the range of the edge function. (Contributed by AV, 24-Dec-2020.) (Revised by AV, 6-Jul-2022.)
Hypotheses
Ref Expression
uhgrvtxedgiedgb.i 𝐼 = (iEdg‘𝐺)
uhgrvtxedgiedgb.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgrvtxedgiedgb ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖) ↔ ∃𝑒𝐸 𝑈𝑒))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐼,𝑖   𝑈,𝑒,𝑖
Allowed substitution hints:   𝐸(𝑖)   𝐺(𝑒,𝑖)   𝑉(𝑒,𝑖)

Proof of Theorem uhgrvtxedgiedgb
StepHypRef Expression
1 edgval 28983 . . . . . . 7 (Edg‘𝐺) = ran (iEdg‘𝐺)
21a1i 11 . . . . . 6 (𝐺 ∈ UHGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
3 uhgrvtxedgiedgb.e . . . . . 6 𝐸 = (Edg‘𝐺)
4 uhgrvtxedgiedgb.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
54rneqi 5904 . . . . . 6 ran 𝐼 = ran (iEdg‘𝐺)
62, 3, 53eqtr4g 2790 . . . . 5 (𝐺 ∈ UHGraph → 𝐸 = ran 𝐼)
76rexeqdv 3302 . . . 4 (𝐺 ∈ UHGraph → (∃𝑒𝐸 𝑈𝑒 ↔ ∃𝑒 ∈ ran 𝐼 𝑈𝑒))
84uhgrfun 29000 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐼)
98funfnd 6550 . . . . 5 (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼)
10 eleq2 2818 . . . . . 6 (𝑒 = (𝐼𝑖) → (𝑈𝑒𝑈 ∈ (𝐼𝑖)))
1110rexrn 7062 . . . . 5 (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
129, 11syl 17 . . . 4 (𝐺 ∈ UHGraph → (∃𝑒 ∈ ran 𝐼 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
137, 12bitrd 279 . . 3 (𝐺 ∈ UHGraph → (∃𝑒𝐸 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
1413adantr 480 . 2 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑒𝐸 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
1514bicomd 223 1 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖) ↔ ∃𝑒𝐸 𝑈𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  dom cdm 5641  ran crn 5642   Fn wfn 6509  cfv 6514  iEdgciedg 28931  Edgcedg 28981  UHGraphcuhgr 28990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-edg 28982  df-uhgr 28992
This theorem is referenced by:  vtxduhgr0edgnel  29429
  Copyright terms: Public domain W3C validator