![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrvtxedgiedgb | Structured version Visualization version GIF version |
Description: In a hypergraph, a vertex is incident with an edge iff it is contained in an element of the range of the edge function. (Contributed by AV, 24-Dec-2020.) (Revised by AV, 6-Jul-2022.) |
Ref | Expression |
---|---|
uhgrvtxedgiedgb.i | ⊢ 𝐼 = (iEdg‘𝐺) |
uhgrvtxedgiedgb.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
uhgrvtxedgiedgb | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖) ↔ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 28849 | . . . . . . 7 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
3 | uhgrvtxedgiedgb.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
4 | uhgrvtxedgiedgb.i | . . . . . . 7 ⊢ 𝐼 = (iEdg‘𝐺) | |
5 | 4 | rneqi 5933 | . . . . . 6 ⊢ ran 𝐼 = ran (iEdg‘𝐺) |
6 | 2, 3, 5 | 3eqtr4g 2792 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → 𝐸 = ran 𝐼) |
7 | 6 | rexeqdv 3321 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼 𝑈 ∈ 𝑒)) |
8 | 4 | uhgrfun 28866 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
9 | 8 | funfnd 6578 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼) |
10 | eleq2 2817 | . . . . . 6 ⊢ (𝑒 = (𝐼‘𝑖) → (𝑈 ∈ 𝑒 ↔ 𝑈 ∈ (𝐼‘𝑖))) | |
11 | 10 | rexrn 7091 | . . . . 5 ⊢ (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼 𝑈 ∈ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) |
12 | 9, 11 | syl 17 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (∃𝑒 ∈ ran 𝐼 𝑈 ∈ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) |
13 | 7, 12 | bitrd 279 | . . 3 ⊢ (𝐺 ∈ UHGraph → (∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) |
14 | 13 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) |
15 | 14 | bicomd 222 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖) ↔ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3065 dom cdm 5672 ran crn 5673 Fn wfn 6537 ‘cfv 6542 iEdgciedg 28797 Edgcedg 28847 UHGraphcuhgr 28856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-edg 28848 df-uhgr 28858 |
This theorem is referenced by: vtxduhgr0edgnel 29295 |
Copyright terms: Public domain | W3C validator |