| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrvtxedgiedgb | Structured version Visualization version GIF version | ||
| Description: In a hypergraph, a vertex is incident with an edge iff it is contained in an element of the range of the edge function. (Contributed by AV, 24-Dec-2020.) (Revised by AV, 6-Jul-2022.) |
| Ref | Expression |
|---|---|
| uhgrvtxedgiedgb.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| uhgrvtxedgiedgb.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgrvtxedgiedgb | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖) ↔ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgval 29033 | . . . . . . 7 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 3 | uhgrvtxedgiedgb.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
| 4 | uhgrvtxedgiedgb.i | . . . . . . 7 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 5 | 4 | rneqi 5922 | . . . . . 6 ⊢ ran 𝐼 = ran (iEdg‘𝐺) |
| 6 | 2, 3, 5 | 3eqtr4g 2796 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → 𝐸 = ran 𝐼) |
| 7 | 6 | rexeqdv 3310 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼 𝑈 ∈ 𝑒)) |
| 8 | 4 | uhgrfun 29050 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
| 9 | 8 | funfnd 6572 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼) |
| 10 | eleq2 2824 | . . . . . 6 ⊢ (𝑒 = (𝐼‘𝑖) → (𝑈 ∈ 𝑒 ↔ 𝑈 ∈ (𝐼‘𝑖))) | |
| 11 | 10 | rexrn 7082 | . . . . 5 ⊢ (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼 𝑈 ∈ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) |
| 12 | 9, 11 | syl 17 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (∃𝑒 ∈ ran 𝐼 𝑈 ∈ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) |
| 13 | 7, 12 | bitrd 279 | . . 3 ⊢ (𝐺 ∈ UHGraph → (∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) |
| 14 | 13 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) |
| 15 | 14 | bicomd 223 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖) ↔ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 dom cdm 5659 ran crn 5660 Fn wfn 6531 ‘cfv 6536 iEdgciedg 28981 Edgcedg 29031 UHGraphcuhgr 29040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-edg 29032 df-uhgr 29042 |
| This theorem is referenced by: vtxduhgr0edgnel 29479 |
| Copyright terms: Public domain | W3C validator |