Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgrvtxedgiedgb | Structured version Visualization version GIF version |
Description: In a hypergraph, a vertex is incident with an edge iff it is contained in an element of the range of the edge function. (Contributed by AV, 24-Dec-2020.) (Revised by AV, 6-Jul-2022.) |
Ref | Expression |
---|---|
uhgrvtxedgiedgb.i | ⊢ 𝐼 = (iEdg‘𝐺) |
uhgrvtxedgiedgb.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
uhgrvtxedgiedgb | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖) ↔ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 27322 | . . . . . . 7 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
3 | uhgrvtxedgiedgb.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
4 | uhgrvtxedgiedgb.i | . . . . . . 7 ⊢ 𝐼 = (iEdg‘𝐺) | |
5 | 4 | rneqi 5835 | . . . . . 6 ⊢ ran 𝐼 = ran (iEdg‘𝐺) |
6 | 2, 3, 5 | 3eqtr4g 2804 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → 𝐸 = ran 𝐼) |
7 | 6 | rexeqdv 3340 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼 𝑈 ∈ 𝑒)) |
8 | 4 | uhgrfun 27339 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
9 | 8 | funfnd 6449 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼) |
10 | eleq2 2827 | . . . . . 6 ⊢ (𝑒 = (𝐼‘𝑖) → (𝑈 ∈ 𝑒 ↔ 𝑈 ∈ (𝐼‘𝑖))) | |
11 | 10 | rexrn 6945 | . . . . 5 ⊢ (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼 𝑈 ∈ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) |
12 | 9, 11 | syl 17 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (∃𝑒 ∈ ran 𝐼 𝑈 ∈ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) |
13 | 7, 12 | bitrd 278 | . . 3 ⊢ (𝐺 ∈ UHGraph → (∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) |
14 | 13 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) |
15 | 14 | bicomd 222 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖) ↔ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 dom cdm 5580 ran crn 5581 Fn wfn 6413 ‘cfv 6418 iEdgciedg 27270 Edgcedg 27320 UHGraphcuhgr 27329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-edg 27321 df-uhgr 27331 |
This theorem is referenced by: vtxduhgr0edgnel 27764 |
Copyright terms: Public domain | W3C validator |