MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxduhgr0edgnel Structured version   Visualization version   GIF version

Theorem vtxduhgr0edgnel 27606
Description: A vertex in a hypergraph has degree 0 iff there is no edge incident with this vertex. (Contributed by AV, 24-Dec-2020.)
Hypotheses
Ref Expression
vtxdushgrfvedg.v 𝑉 = (Vtx‘𝐺)
vtxdushgrfvedg.e 𝐸 = (Edg‘𝐺)
vtxdushgrfvedg.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxduhgr0edgnel ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑒𝐸 𝑈𝑒))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑈,𝑒   𝑒,𝑉
Allowed substitution hint:   𝐷(𝑒)

Proof of Theorem vtxduhgr0edgnel
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 vtxdushgrfvedg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2738 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
3 vtxdushgrfvedg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
41, 2, 3vtxd0nedgb 27600 . . 3 (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
54adantl 485 . 2 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
6 vtxdushgrfvedg.e . . . 4 𝐸 = (Edg‘𝐺)
72, 6uhgrvtxedgiedgb 27251 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖) ↔ ∃𝑒𝐸 𝑈𝑒))
87notbid 321 . 2 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖) ↔ ¬ ∃𝑒𝐸 𝑈𝑒))
95, 8bitrd 282 1 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑒𝐸 𝑈𝑒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2111  wrex 3063  dom cdm 5566  cfv 6398  0cc0 10754  Vtxcvtx 27111  iEdgciedg 27112  Edgcedg 27162  UHGraphcuhgr 27171  VtxDegcvtxdg 27577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-1st 7780  df-2nd 7781  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-card 9580  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-nn 11856  df-n0 12116  df-xnn0 12188  df-z 12202  df-uz 12464  df-xadd 12730  df-fz 13121  df-hash 13922  df-edg 27163  df-uhgr 27173  df-vtxdg 27578
This theorem is referenced by:  vtxdusgr0edgnel  27607  uhgrvd00  27646
  Copyright terms: Public domain W3C validator