MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzdifsuc Structured version   Visualization version   GIF version

Theorem fzdifsuc 13624
Description: Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.)
Assertion
Ref Expression
fzdifsuc (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))

Proof of Theorem fzdifsuc
StepHypRef Expression
1 fzsuc 13611 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
21difeq1d 4125 . 2 (𝑁 ∈ (ℤ𝑀) → ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) = (((𝑀...𝑁) ∪ {(𝑁 + 1)}) ∖ {(𝑁 + 1)}))
3 uncom 4158 . . 3 ({(𝑁 + 1)} ∪ (𝑀...𝑁)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})
4 ssun2 4179 . . . 4 {(𝑁 + 1)} ⊆ ((𝑀...𝑁) ∪ {(𝑁 + 1)})
5 incom 4209 . . . . . 6 ({(𝑁 + 1)} ∩ (𝑀...𝑁)) = ((𝑀...𝑁) ∩ {(𝑁 + 1)})
6 fzp1disj 13623 . . . . . 6 ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅
75, 6eqtri 2765 . . . . 5 ({(𝑁 + 1)} ∩ (𝑀...𝑁)) = ∅
87a1i 11 . . . 4 (𝑁 ∈ (ℤ𝑀) → ({(𝑁 + 1)} ∩ (𝑀...𝑁)) = ∅)
9 uneqdifeq 4493 . . . 4 (({(𝑁 + 1)} ⊆ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ∧ ({(𝑁 + 1)} ∩ (𝑀...𝑁)) = ∅) → (({(𝑁 + 1)} ∪ (𝑀...𝑁)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (((𝑀...𝑁) ∪ {(𝑁 + 1)}) ∖ {(𝑁 + 1)}) = (𝑀...𝑁)))
104, 8, 9sylancr 587 . . 3 (𝑁 ∈ (ℤ𝑀) → (({(𝑁 + 1)} ∪ (𝑀...𝑁)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (((𝑀...𝑁) ∪ {(𝑁 + 1)}) ∖ {(𝑁 + 1)}) = (𝑀...𝑁)))
113, 10mpbii 233 . 2 (𝑁 ∈ (ℤ𝑀) → (((𝑀...𝑁) ∪ {(𝑁 + 1)}) ∖ {(𝑁 + 1)}) = (𝑀...𝑁))
122, 11eqtr2d 2778 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  {csn 4626  cfv 6561  (class class class)co 7431  1c1 11156   + caddc 11158  cuz 12878  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548
This theorem is referenced by:  fzdifsuc2  45322  dvnmul  45958
  Copyright terms: Public domain W3C validator