MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzdifsuc Structured version   Visualization version   GIF version

Theorem fzdifsuc 12718
Description: Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.)
Assertion
Ref Expression
fzdifsuc (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))

Proof of Theorem fzdifsuc
StepHypRef Expression
1 fzsuc 12705 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
21difeq1d 3950 . 2 (𝑁 ∈ (ℤ𝑀) → ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) = (((𝑀...𝑁) ∪ {(𝑁 + 1)}) ∖ {(𝑁 + 1)}))
3 uncom 3980 . . 3 ({(𝑁 + 1)} ∪ (𝑀...𝑁)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})
4 ssun2 4000 . . . 4 {(𝑁 + 1)} ⊆ ((𝑀...𝑁) ∪ {(𝑁 + 1)})
5 incom 4028 . . . . . 6 ({(𝑁 + 1)} ∩ (𝑀...𝑁)) = ((𝑀...𝑁) ∩ {(𝑁 + 1)})
6 fzp1disj 12717 . . . . . 6 ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅
75, 6eqtri 2802 . . . . 5 ({(𝑁 + 1)} ∩ (𝑀...𝑁)) = ∅
87a1i 11 . . . 4 (𝑁 ∈ (ℤ𝑀) → ({(𝑁 + 1)} ∩ (𝑀...𝑁)) = ∅)
9 uneqdifeq 4281 . . . 4 (({(𝑁 + 1)} ⊆ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ∧ ({(𝑁 + 1)} ∩ (𝑀...𝑁)) = ∅) → (({(𝑁 + 1)} ∪ (𝑀...𝑁)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (((𝑀...𝑁) ∪ {(𝑁 + 1)}) ∖ {(𝑁 + 1)}) = (𝑀...𝑁)))
104, 8, 9sylancr 581 . . 3 (𝑁 ∈ (ℤ𝑀) → (({(𝑁 + 1)} ∪ (𝑀...𝑁)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (((𝑀...𝑁) ∪ {(𝑁 + 1)}) ∖ {(𝑁 + 1)}) = (𝑀...𝑁)))
113, 10mpbii 225 . 2 (𝑁 ∈ (ℤ𝑀) → (((𝑀...𝑁) ∪ {(𝑁 + 1)}) ∖ {(𝑁 + 1)}) = (𝑀...𝑁))
122, 11eqtr2d 2815 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1601  wcel 2107  cdif 3789  cun 3790  cin 3791  wss 3792  c0 4141  {csn 4398  cfv 6135  (class class class)co 6922  1c1 10273   + caddc 10275  cuz 11992  ...cfz 12643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644
This theorem is referenced by:  fzdifsuc2  40433  dvnmul  41086
  Copyright terms: Public domain W3C validator