![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzdifsuc | Structured version Visualization version GIF version |
Description: Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.) |
Ref | Expression |
---|---|
fzdifsuc | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzsuc 12764 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | |
2 | 1 | difeq1d 3982 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}) = (((𝑀...𝑁) ∪ {(𝑁 + 1)}) ∖ {(𝑁 + 1)})) |
3 | uncom 4012 | . . 3 ⊢ ({(𝑁 + 1)} ∪ (𝑀...𝑁)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) | |
4 | ssun2 4032 | . . . 4 ⊢ {(𝑁 + 1)} ⊆ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) | |
5 | incom 4060 | . . . . . 6 ⊢ ({(𝑁 + 1)} ∩ (𝑀...𝑁)) = ((𝑀...𝑁) ∩ {(𝑁 + 1)}) | |
6 | fzp1disj 12776 | . . . . . 6 ⊢ ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ | |
7 | 5, 6 | eqtri 2796 | . . . . 5 ⊢ ({(𝑁 + 1)} ∩ (𝑀...𝑁)) = ∅ |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ({(𝑁 + 1)} ∩ (𝑀...𝑁)) = ∅) |
9 | uneqdifeq 4315 | . . . 4 ⊢ (({(𝑁 + 1)} ⊆ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ∧ ({(𝑁 + 1)} ∩ (𝑀...𝑁)) = ∅) → (({(𝑁 + 1)} ∪ (𝑀...𝑁)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (((𝑀...𝑁) ∪ {(𝑁 + 1)}) ∖ {(𝑁 + 1)}) = (𝑀...𝑁))) | |
10 | 4, 8, 9 | sylancr 578 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (({(𝑁 + 1)} ∪ (𝑀...𝑁)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (((𝑀...𝑁) ∪ {(𝑁 + 1)}) ∖ {(𝑁 + 1)}) = (𝑀...𝑁))) |
11 | 3, 10 | mpbii 225 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (((𝑀...𝑁) ∪ {(𝑁 + 1)}) ∖ {(𝑁 + 1)}) = (𝑀...𝑁)) |
12 | 2, 11 | eqtr2d 2809 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2050 ∖ cdif 3820 ∪ cun 3821 ∩ cin 3822 ⊆ wss 3823 ∅c0 4172 {csn 4435 ‘cfv 6182 (class class class)co 6970 1c1 10330 + caddc 10332 ℤ≥cuz 12052 ...cfz 12702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-er 8083 df-en 8301 df-dom 8302 df-sdom 8303 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-nn 11434 df-n0 11702 df-z 11788 df-uz 12053 df-fz 12703 |
This theorem is referenced by: fzdifsuc2 41006 dvnmul 41658 |
Copyright terms: Public domain | W3C validator |