MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldss2 Structured version   Visualization version   GIF version

Theorem cldss2 23059
Description: The set of closed sets is contained in the powerset of the base. (Contributed by Mario Carneiro, 6-Jan-2014.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldss2 (Clsd‘𝐽) ⊆ 𝒫 𝑋

Proof of Theorem cldss2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . 4 𝑋 = 𝐽
21cldss 23058 . . 3 (𝑥 ∈ (Clsd‘𝐽) → 𝑥𝑋)
3 velpw 4627 . . 3 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
42, 3sylibr 234 . 2 (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ 𝒫 𝑋)
54ssriv 4012 1 (Clsd‘𝐽) ⊆ 𝒫 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wss 3976  𝒫 cpw 4622   cuni 4931  cfv 6573  Clsdccld 23045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-top 22921  df-cld 23048
This theorem is referenced by:  cldmre  23107  cncls2  23302  fclscmp  24059  bcthlem5  25381  ubthlem1  30902  unicls  33849  clsf2  44088
  Copyright terms: Public domain W3C validator