MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldss2 Structured version   Visualization version   GIF version

Theorem cldss2 22968
Description: The set of closed sets is contained in the powerset of the base. (Contributed by Mario Carneiro, 6-Jan-2014.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldss2 (Clsd‘𝐽) ⊆ 𝒫 𝑋

Proof of Theorem cldss2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . 4 𝑋 = 𝐽
21cldss 22967 . . 3 (𝑥 ∈ (Clsd‘𝐽) → 𝑥𝑋)
3 velpw 4580 . . 3 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
42, 3sylibr 234 . 2 (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ 𝒫 𝑋)
54ssriv 3962 1 (Clsd‘𝐽) ⊆ 𝒫 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wss 3926  𝒫 cpw 4575   cuni 4883  cfv 6531  Clsdccld 22954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539  df-top 22832  df-cld 22957
This theorem is referenced by:  cldmre  23016  cncls2  23211  fclscmp  23968  bcthlem5  25280  ubthlem1  30851  unicls  33934  clsf2  44150
  Copyright terms: Public domain W3C validator