Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpr2tp Structured version   Visualization version   GIF version

Theorem tpr2tp 33989
Description: The usual topology on (ℝ × ℝ) is the product topology of the usual topology on . (Contributed by Thierry Arnoux, 21-Sep-2017.)
Hypothesis
Ref Expression
tpr2tp.0 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
tpr2tp (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ))

Proof of Theorem tpr2tp
StepHypRef Expression
1 tpr2tp.0 . . 3 𝐽 = (topGen‘ran (,))
2 retopon 24698 . . 3 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
31, 2eqeltri 2829 . 2 𝐽 ∈ (TopOn‘ℝ)
4 txtopon 23526 . 2 ((𝐽 ∈ (TopOn‘ℝ) ∧ 𝐽 ∈ (TopOn‘ℝ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)))
53, 3, 4mp2an 692 1 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113   × cxp 5619  ran crn 5622  cfv 6489  (class class class)co 7355  cr 11016  (,)cioo 13252  topGenctg 17348  TopOnctopon 22845   ×t ctx 23495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-pre-lttri 11091  ax-pre-lttrn 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-ioo 13256  df-topgen 17354  df-top 22829  df-topon 22846  df-bases 22881  df-tx 23497
This theorem is referenced by:  tpr2uni  33990  sxbrsigalem4  34372  sxbrsiga  34375
  Copyright terms: Public domain W3C validator