| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tpr2tp | Structured version Visualization version GIF version | ||
| Description: The usual topology on (ℝ × ℝ) is the product topology of the usual topology on ℝ. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
| Ref | Expression |
|---|---|
| tpr2tp.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| Ref | Expression |
|---|---|
| tpr2tp | ⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpr2tp.0 | . . 3 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 2 | retopon 24651 | . . 3 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 3 | 1, 2 | eqeltri 2824 | . 2 ⊢ 𝐽 ∈ (TopOn‘ℝ) |
| 4 | txtopon 23478 | . 2 ⊢ ((𝐽 ∈ (TopOn‘ℝ) ∧ 𝐽 ∈ (TopOn‘ℝ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ))) | |
| 5 | 3, 3, 4 | mp2an 692 | 1 ⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 × cxp 5636 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 (,)cioo 13306 topGenctg 17400 TopOnctopon 22797 ×t ctx 23447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioo 13310 df-topgen 17406 df-top 22781 df-topon 22798 df-bases 22833 df-tx 23449 |
| This theorem is referenced by: tpr2uni 33895 sxbrsigalem4 34278 sxbrsiga 34281 |
| Copyright terms: Public domain | W3C validator |