| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sxbrsigalem4 | Structured version Visualization version GIF version | ||
| Description: The Borel algebra on (ℝ × ℝ) is generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). Proposition 1.1.5 of [Cohn] p. 4 . Note that the interval used in this formalization are closed-below, open-above instead of open-below, closed-above in the proof as they are ultimately generated by the floor function. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
| Ref | Expression |
|---|---|
| sxbrsigalem4 | ⊢ (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sxbrsiga.0 | . . 3 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 2 | dya2ioc.1 | . . 3 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
| 3 | dya2ioc.2 | . . 3 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
| 4 | 1, 2, 3 | sxbrsigalem1 34253 | . 2 ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅) |
| 5 | 1, 2, 3 | sxbrsigalem2 34254 | . . . 4 ⊢ (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) |
| 6 | 1 | sxbrsigalem3 34240 | . . . 4 ⊢ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) |
| 7 | 5, 6 | sstri 3945 | . . 3 ⊢ (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) |
| 8 | 1 | tpr2tp 33871 | . . . . . 6 ⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)) |
| 9 | 8 | topontopi 22800 | . . . . 5 ⊢ (𝐽 ×t 𝐽) ∈ Top |
| 10 | eqid 2729 | . . . . 5 ⊢ ∪ (𝐽 ×t 𝐽) = ∪ (𝐽 ×t 𝐽) | |
| 11 | 9, 10 | unicls 33870 | . . . 4 ⊢ ∪ (Clsd‘(𝐽 ×t 𝐽)) = ∪ (𝐽 ×t 𝐽) |
| 12 | cldssbrsiga 34154 | . . . . 5 ⊢ ((𝐽 ×t 𝐽) ∈ Top → (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(𝐽 ×t 𝐽))) | |
| 13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(𝐽 ×t 𝐽)) |
| 14 | sigagenss2 34117 | . . . 4 ⊢ ((∪ (Clsd‘(𝐽 ×t 𝐽)) = ∪ (𝐽 ×t 𝐽) ∧ (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(𝐽 ×t 𝐽)) ∧ (𝐽 ×t 𝐽) ∈ Top) → (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) ⊆ (sigaGen‘(𝐽 ×t 𝐽))) | |
| 15 | 11, 13, 9, 14 | mp3an 1463 | . . 3 ⊢ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) ⊆ (sigaGen‘(𝐽 ×t 𝐽)) |
| 16 | 7, 15 | sstri 3945 | . 2 ⊢ (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(𝐽 ×t 𝐽)) |
| 17 | 4, 16 | eqssi 3952 | 1 ⊢ (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘ran 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cun 3901 ⊆ wss 3903 ∪ cuni 4858 ↦ cmpt 5173 × cxp 5617 ran crn 5620 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 ℝcr 11008 1c1 11010 + caddc 11012 +∞cpnf 11146 / cdiv 11777 2c2 12183 ℤcz 12471 (,)cioo 13248 [,)cico 13250 ↑cexp 13968 topGenctg 17341 Topctop 22778 Clsdccld 22901 ×t ctx 23445 sigaGencsigagen 34105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-ac2 10357 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-acn 9838 df-ac 10010 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-refld 21512 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-cmp 23272 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-fcls 23826 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-cfil 25153 df-cmet 25155 df-cms 25233 df-limc 25765 df-dv 25766 df-log 26463 df-cxp 26464 df-logb 26673 df-siga 34076 df-sigagen 34106 df-brsiga 34149 |
| This theorem is referenced by: sxbrsigalem5 34256 |
| Copyright terms: Public domain | W3C validator |