![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ntrss2 | Structured version Visualization version GIF version |
Description: A subset includes its interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrss2 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | ntrval 21218 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
3 | inss2 4060 | . . . 4 ⊢ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆 | |
4 | 3 | unissi 4685 | . . 3 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ ∪ 𝒫 𝑆 |
5 | unipw 5141 | . . 3 ⊢ ∪ 𝒫 𝑆 = 𝑆 | |
6 | 4, 5 | sseqtri 3862 | . 2 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆 |
7 | 2, 6 | syl6eqss 3880 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∩ cin 3797 ⊆ wss 3798 𝒫 cpw 4380 ∪ cuni 4660 ‘cfv 6127 Topctop 21075 intcnt 21199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-top 21076 df-ntr 21202 |
This theorem is referenced by: ntrin 21243 neiint 21286 opnnei 21302 topssnei 21306 maxlp 21329 restntr 21364 iscnp4 21445 cnntri 21453 cnntr 21457 cnprest 21471 llycmpkgen2 21731 xkococnlem 21840 flimopn 22156 fclsneii 22198 fcfnei 22216 subgntr 22287 iccntr 23001 rectbntr0 23012 bcthlem5 23503 limcflf 24051 dvbss 24071 perfdvf 24073 dvreslem 24079 dvcnp2 24089 dvnres 24100 dvaddbr 24107 dvcmulf 24114 dvmptres2 24131 dvmptcmul 24133 dvmptntr 24140 dvcnvre 24188 taylthlem1 24533 taylthlem2 24534 ulmdvlem3 24562 lgamucov2 25185 ubthlem1 28277 kur14lem6 31735 cvmlift2lem12 31838 opnbnd 32853 opnregcld 32858 cldregopn 32859 dvresntr 40925 |
Copyright terms: Public domain | W3C validator |