| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ntrss2 | Structured version Visualization version GIF version | ||
| Description: A subset includes its interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ntrss2 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ntrval 23045 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 3 | inss2 4237 | . . . 4 ⊢ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆 | |
| 4 | 3 | unissi 4915 | . . 3 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ ∪ 𝒫 𝑆 |
| 5 | unipw 5454 | . . 3 ⊢ ∪ 𝒫 𝑆 = 𝑆 | |
| 6 | 4, 5 | sseqtri 4031 | . 2 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆 |
| 7 | 2, 6 | eqsstrdi 4027 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∩ cin 3949 ⊆ wss 3950 𝒫 cpw 4599 ∪ cuni 4906 ‘cfv 6560 Topctop 22900 intcnt 23026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-top 22901 df-ntr 23029 |
| This theorem is referenced by: ntrin 23070 neiint 23113 opnnei 23129 topssnei 23133 maxlp 23156 restntr 23191 iscnp4 23272 cnntri 23280 cnntr 23284 cnprest 23298 llycmpkgen2 23559 xkococnlem 23668 flimopn 23984 fclsneii 24026 fcfnei 24044 subgntr 24116 iccntr 24844 rectbntr0 24855 bcthlem5 25363 limcflf 25917 dvbss 25937 perfdvf 25939 dvreslem 25945 dvcnp2 25956 dvcnp2OLD 25957 dvnres 25968 dvaddbr 25975 dvcmulf 25983 dvmptres2 26001 dvmptcmul 26003 dvmptntr 26010 dvcnvre 26059 taylthlem1 26416 taylthlem2 26417 taylthlem2OLD 26418 ulmdvlem3 26446 lgamucov2 27083 ubthlem1 30890 kur14lem6 35217 cvmlift2lem12 35320 opnbnd 36327 opnregcld 36332 cldregopn 36333 dvresntr 45938 |
| Copyright terms: Public domain | W3C validator |