| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ntrss2 | Structured version Visualization version GIF version | ||
| Description: A subset includes its interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ntrss2 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ntrval 22951 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 3 | inss2 4185 | . . . 4 ⊢ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆 | |
| 4 | 3 | unissi 4865 | . . 3 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ ∪ 𝒫 𝑆 |
| 5 | unipw 5389 | . . 3 ⊢ ∪ 𝒫 𝑆 = 𝑆 | |
| 6 | 4, 5 | sseqtri 3978 | . 2 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆 |
| 7 | 2, 6 | eqsstrdi 3974 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 ‘cfv 6481 Topctop 22808 intcnt 22932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-top 22809 df-ntr 22935 |
| This theorem is referenced by: ntrin 22976 neiint 23019 opnnei 23035 topssnei 23039 maxlp 23062 restntr 23097 iscnp4 23178 cnntri 23186 cnntr 23190 cnprest 23204 llycmpkgen2 23465 xkococnlem 23574 flimopn 23890 fclsneii 23932 fcfnei 23950 subgntr 24022 iccntr 24737 rectbntr0 24748 bcthlem5 25255 limcflf 25809 dvbss 25829 perfdvf 25831 dvreslem 25837 dvcnp2 25848 dvcnp2OLD 25849 dvnres 25860 dvaddbr 25867 dvcmulf 25875 dvmptres2 25893 dvmptcmul 25895 dvmptntr 25902 dvcnvre 25951 taylthlem1 26308 taylthlem2 26309 taylthlem2OLD 26310 ulmdvlem3 26338 lgamucov2 26976 ubthlem1 30850 kur14lem6 35255 cvmlift2lem12 35358 opnbnd 36369 opnregcld 36374 cldregopn 36375 dvresntr 46026 |
| Copyright terms: Public domain | W3C validator |