MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unifpw Structured version   Visualization version   GIF version

Theorem unifpw 8826
Description: A set is the union of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
unifpw (𝒫 𝐴 ∩ Fin) = 𝐴

Proof of Theorem unifpw
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 inss1 4204 . . . . . 6 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
21unissi 4846 . . . . 5 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
3 unipw 5342 . . . . 5 𝒫 𝐴 = 𝐴
42, 3sseqtri 4002 . . . 4 (𝒫 𝐴 ∩ Fin) ⊆ 𝐴
54sseli 3962 . . 3 (𝑎 (𝒫 𝐴 ∩ Fin) → 𝑎𝐴)
6 snelpwi 5336 . . . . . 6 (𝑎𝐴 → {𝑎} ∈ 𝒫 𝐴)
7 snfi 8593 . . . . . . 7 {𝑎} ∈ Fin
87a1i 11 . . . . . 6 (𝑎𝐴 → {𝑎} ∈ Fin)
96, 8elind 4170 . . . . 5 (𝑎𝐴 → {𝑎} ∈ (𝒫 𝐴 ∩ Fin))
10 elssuni 4867 . . . . 5 ({𝑎} ∈ (𝒫 𝐴 ∩ Fin) → {𝑎} ⊆ (𝒫 𝐴 ∩ Fin))
119, 10syl 17 . . . 4 (𝑎𝐴 → {𝑎} ⊆ (𝒫 𝐴 ∩ Fin))
12 snidg 4598 . . . 4 (𝑎𝐴𝑎 ∈ {𝑎})
1311, 12sseldd 3967 . . 3 (𝑎𝐴𝑎 (𝒫 𝐴 ∩ Fin))
145, 13impbii 211 . 2 (𝑎 (𝒫 𝐴 ∩ Fin) ↔ 𝑎𝐴)
1514eqriv 2818 1 (𝒫 𝐴 ∩ Fin) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2110  cin 3934  wss 3935  𝒫 cpw 4538  {csn 4566   cuni 4837  Fincfn 8508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-om 7580  df-1o 8101  df-en 8509  df-fin 8512
This theorem is referenced by:  isacs5lem  17778  acsmapd  17787  acsmap2d  17788
  Copyright terms: Public domain W3C validator