| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unifpw | Structured version Visualization version GIF version | ||
| Description: A set is the union of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| unifpw | ⊢ ∪ (𝒫 𝐴 ∩ Fin) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4203 | . . . . . 6 ⊢ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴 | |
| 2 | 1 | unissi 4883 | . . . . 5 ⊢ ∪ (𝒫 𝐴 ∩ Fin) ⊆ ∪ 𝒫 𝐴 |
| 3 | unipw 5413 | . . . . 5 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 4 | 2, 3 | sseqtri 3998 | . . . 4 ⊢ ∪ (𝒫 𝐴 ∩ Fin) ⊆ 𝐴 |
| 5 | 4 | sseli 3945 | . . 3 ⊢ (𝑎 ∈ ∪ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝐴) |
| 6 | snelpwi 5406 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ∈ 𝒫 𝐴) | |
| 7 | snfi 9017 | . . . . . . 7 ⊢ {𝑎} ∈ Fin | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ∈ Fin) |
| 9 | 6, 8 | elind 4166 | . . . . 5 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ∈ (𝒫 𝐴 ∩ Fin)) |
| 10 | elssuni 4904 | . . . . 5 ⊢ ({𝑎} ∈ (𝒫 𝐴 ∩ Fin) → {𝑎} ⊆ ∪ (𝒫 𝐴 ∩ Fin)) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ⊆ ∪ (𝒫 𝐴 ∩ Fin)) |
| 12 | snidg 4627 | . . . 4 ⊢ (𝑎 ∈ 𝐴 → 𝑎 ∈ {𝑎}) | |
| 13 | 11, 12 | sseldd 3950 | . . 3 ⊢ (𝑎 ∈ 𝐴 → 𝑎 ∈ ∪ (𝒫 𝐴 ∩ Fin)) |
| 14 | 5, 13 | impbii 209 | . 2 ⊢ (𝑎 ∈ ∪ (𝒫 𝐴 ∩ Fin) ↔ 𝑎 ∈ 𝐴) |
| 15 | 14 | eqriv 2727 | 1 ⊢ ∪ (𝒫 𝐴 ∩ Fin) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 {csn 4592 ∪ cuni 4874 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-om 7846 df-1o 8437 df-en 8922 df-fin 8925 |
| This theorem is referenced by: isacs5lem 18511 acsmapd 18520 acsmap2d 18521 |
| Copyright terms: Public domain | W3C validator |