Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unifpw | Structured version Visualization version GIF version |
Description: A set is the union of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
unifpw | ⊢ ∪ (𝒫 𝐴 ∩ Fin) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4159 | . . . . . 6 ⊢ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴 | |
2 | 1 | unissi 4845 | . . . . 5 ⊢ ∪ (𝒫 𝐴 ∩ Fin) ⊆ ∪ 𝒫 𝐴 |
3 | unipw 5360 | . . . . 5 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
4 | 2, 3 | sseqtri 3953 | . . . 4 ⊢ ∪ (𝒫 𝐴 ∩ Fin) ⊆ 𝐴 |
5 | 4 | sseli 3913 | . . 3 ⊢ (𝑎 ∈ ∪ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝐴) |
6 | snelpwi 5354 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ∈ 𝒫 𝐴) | |
7 | snfi 8788 | . . . . . . 7 ⊢ {𝑎} ∈ Fin | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ∈ Fin) |
9 | 6, 8 | elind 4124 | . . . . 5 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ∈ (𝒫 𝐴 ∩ Fin)) |
10 | elssuni 4868 | . . . . 5 ⊢ ({𝑎} ∈ (𝒫 𝐴 ∩ Fin) → {𝑎} ⊆ ∪ (𝒫 𝐴 ∩ Fin)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ⊆ ∪ (𝒫 𝐴 ∩ Fin)) |
12 | snidg 4592 | . . . 4 ⊢ (𝑎 ∈ 𝐴 → 𝑎 ∈ {𝑎}) | |
13 | 11, 12 | sseldd 3918 | . . 3 ⊢ (𝑎 ∈ 𝐴 → 𝑎 ∈ ∪ (𝒫 𝐴 ∩ Fin)) |
14 | 5, 13 | impbii 208 | . 2 ⊢ (𝑎 ∈ ∪ (𝒫 𝐴 ∩ Fin) ↔ 𝑎 ∈ 𝐴) |
15 | 14 | eqriv 2735 | 1 ⊢ ∪ (𝒫 𝐴 ∩ Fin) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 {csn 4558 ∪ cuni 4836 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-om 7688 df-1o 8267 df-en 8692 df-fin 8695 |
This theorem is referenced by: isacs5lem 18178 acsmapd 18187 acsmap2d 18188 |
Copyright terms: Public domain | W3C validator |