| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unifpw | Structured version Visualization version GIF version | ||
| Description: A set is the union of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| unifpw | ⊢ ∪ (𝒫 𝐴 ∩ Fin) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4212 | . . . . . 6 ⊢ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴 | |
| 2 | 1 | unissi 4892 | . . . . 5 ⊢ ∪ (𝒫 𝐴 ∩ Fin) ⊆ ∪ 𝒫 𝐴 |
| 3 | unipw 5425 | . . . . 5 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 4 | 2, 3 | sseqtri 4007 | . . . 4 ⊢ ∪ (𝒫 𝐴 ∩ Fin) ⊆ 𝐴 |
| 5 | 4 | sseli 3954 | . . 3 ⊢ (𝑎 ∈ ∪ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝐴) |
| 6 | snelpwi 5418 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ∈ 𝒫 𝐴) | |
| 7 | snfi 9057 | . . . . . . 7 ⊢ {𝑎} ∈ Fin | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ∈ Fin) |
| 9 | 6, 8 | elind 4175 | . . . . 5 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ∈ (𝒫 𝐴 ∩ Fin)) |
| 10 | elssuni 4913 | . . . . 5 ⊢ ({𝑎} ∈ (𝒫 𝐴 ∩ Fin) → {𝑎} ⊆ ∪ (𝒫 𝐴 ∩ Fin)) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ⊆ ∪ (𝒫 𝐴 ∩ Fin)) |
| 12 | snidg 4636 | . . . 4 ⊢ (𝑎 ∈ 𝐴 → 𝑎 ∈ {𝑎}) | |
| 13 | 11, 12 | sseldd 3959 | . . 3 ⊢ (𝑎 ∈ 𝐴 → 𝑎 ∈ ∪ (𝒫 𝐴 ∩ Fin)) |
| 14 | 5, 13 | impbii 209 | . 2 ⊢ (𝑎 ∈ ∪ (𝒫 𝐴 ∩ Fin) ↔ 𝑎 ∈ 𝐴) |
| 15 | 14 | eqriv 2732 | 1 ⊢ ∪ (𝒫 𝐴 ∩ Fin) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 {csn 4601 ∪ cuni 4883 Fincfn 8959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-om 7862 df-1o 8480 df-en 8960 df-fin 8963 |
| This theorem is referenced by: isacs5lem 18555 acsmapd 18564 acsmap2d 18565 |
| Copyright terms: Public domain | W3C validator |