MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unifpw Structured version   Visualization version   GIF version

Theorem unifpw 9239
Description: A set is the union of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
unifpw (𝒫 𝐴 ∩ Fin) = 𝐴

Proof of Theorem unifpw
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 inss1 4187 . . . . . 6 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
21unissi 4868 . . . . 5 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
3 unipw 5391 . . . . 5 𝒫 𝐴 = 𝐴
42, 3sseqtri 3983 . . . 4 (𝒫 𝐴 ∩ Fin) ⊆ 𝐴
54sseli 3930 . . 3 (𝑎 (𝒫 𝐴 ∩ Fin) → 𝑎𝐴)
6 snelpwi 5385 . . . . . 6 (𝑎𝐴 → {𝑎} ∈ 𝒫 𝐴)
7 snfi 8965 . . . . . . 7 {𝑎} ∈ Fin
87a1i 11 . . . . . 6 (𝑎𝐴 → {𝑎} ∈ Fin)
96, 8elind 4150 . . . . 5 (𝑎𝐴 → {𝑎} ∈ (𝒫 𝐴 ∩ Fin))
10 elssuni 4889 . . . . 5 ({𝑎} ∈ (𝒫 𝐴 ∩ Fin) → {𝑎} ⊆ (𝒫 𝐴 ∩ Fin))
119, 10syl 17 . . . 4 (𝑎𝐴 → {𝑎} ⊆ (𝒫 𝐴 ∩ Fin))
12 snidg 4613 . . . 4 (𝑎𝐴𝑎 ∈ {𝑎})
1311, 12sseldd 3935 . . 3 (𝑎𝐴𝑎 (𝒫 𝐴 ∩ Fin))
145, 13impbii 209 . 2 (𝑎 (𝒫 𝐴 ∩ Fin) ↔ 𝑎𝐴)
1514eqriv 2728 1 (𝒫 𝐴 ∩ Fin) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  cin 3901  wss 3902  𝒫 cpw 4550  {csn 4576   cuni 4859  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-om 7797  df-1o 8385  df-en 8870  df-fin 8873
This theorem is referenced by:  isacs5lem  18448  acsmapd  18457  acsmap2d  18458
  Copyright terms: Public domain W3C validator