MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unifpw Structured version   Visualization version   GIF version

Theorem unifpw 8557
Description: A set is the union of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
unifpw (𝒫 𝐴 ∩ Fin) = 𝐴

Proof of Theorem unifpw
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 inss1 4052 . . . . . 6 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
21unissi 4696 . . . . 5 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
3 unipw 5150 . . . . 5 𝒫 𝐴 = 𝐴
42, 3sseqtri 3855 . . . 4 (𝒫 𝐴 ∩ Fin) ⊆ 𝐴
54sseli 3816 . . 3 (𝑎 (𝒫 𝐴 ∩ Fin) → 𝑎𝐴)
6 snelpwi 5144 . . . . . 6 (𝑎𝐴 → {𝑎} ∈ 𝒫 𝐴)
7 snfi 8326 . . . . . . 7 {𝑎} ∈ Fin
87a1i 11 . . . . . 6 (𝑎𝐴 → {𝑎} ∈ Fin)
96, 8elind 4020 . . . . 5 (𝑎𝐴 → {𝑎} ∈ (𝒫 𝐴 ∩ Fin))
10 elssuni 4702 . . . . 5 ({𝑎} ∈ (𝒫 𝐴 ∩ Fin) → {𝑎} ⊆ (𝒫 𝐴 ∩ Fin))
119, 10syl 17 . . . 4 (𝑎𝐴 → {𝑎} ⊆ (𝒫 𝐴 ∩ Fin))
12 snidg 4427 . . . 4 (𝑎𝐴𝑎 ∈ {𝑎})
1311, 12sseldd 3821 . . 3 (𝑎𝐴𝑎 (𝒫 𝐴 ∩ Fin))
145, 13impbii 201 . 2 (𝑎 (𝒫 𝐴 ∩ Fin) ↔ 𝑎𝐴)
1514eqriv 2774 1 (𝒫 𝐴 ∩ Fin) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wcel 2106  cin 3790  wss 3791  𝒫 cpw 4378  {csn 4397   cuni 4671  Fincfn 8241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-om 7344  df-1o 7843  df-en 8242  df-fin 8245
This theorem is referenced by:  isacs5lem  17555  acsmapd  17564  acsmap2d  17565
  Copyright terms: Public domain W3C validator