MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unifpw Structured version   Visualization version   GIF version

Theorem unifpw 9264
Description: A set is the union of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
unifpw (𝒫 𝐴 ∩ Fin) = 𝐴

Proof of Theorem unifpw
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 inss1 4190 . . . . . 6 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
21unissi 4870 . . . . 5 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
3 unipw 5397 . . . . 5 𝒫 𝐴 = 𝐴
42, 3sseqtri 3986 . . . 4 (𝒫 𝐴 ∩ Fin) ⊆ 𝐴
54sseli 3933 . . 3 (𝑎 (𝒫 𝐴 ∩ Fin) → 𝑎𝐴)
6 snelpwi 5390 . . . . . 6 (𝑎𝐴 → {𝑎} ∈ 𝒫 𝐴)
7 snfi 8975 . . . . . . 7 {𝑎} ∈ Fin
87a1i 11 . . . . . 6 (𝑎𝐴 → {𝑎} ∈ Fin)
96, 8elind 4153 . . . . 5 (𝑎𝐴 → {𝑎} ∈ (𝒫 𝐴 ∩ Fin))
10 elssuni 4891 . . . . 5 ({𝑎} ∈ (𝒫 𝐴 ∩ Fin) → {𝑎} ⊆ (𝒫 𝐴 ∩ Fin))
119, 10syl 17 . . . 4 (𝑎𝐴 → {𝑎} ⊆ (𝒫 𝐴 ∩ Fin))
12 snidg 4614 . . . 4 (𝑎𝐴𝑎 ∈ {𝑎})
1311, 12sseldd 3938 . . 3 (𝑎𝐴𝑎 (𝒫 𝐴 ∩ Fin))
145, 13impbii 209 . 2 (𝑎 (𝒫 𝐴 ∩ Fin) ↔ 𝑎𝐴)
1514eqriv 2726 1 (𝒫 𝐴 ∩ Fin) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cin 3904  wss 3905  𝒫 cpw 4553  {csn 4579   cuni 4861  Fincfn 8879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-om 7807  df-1o 8395  df-en 8880  df-fin 8883
This theorem is referenced by:  isacs5lem  18469  acsmapd  18478  acsmap2d  18479
  Copyright terms: Public domain W3C validator