Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unifpw | Structured version Visualization version GIF version |
Description: A set is the union of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
unifpw | ⊢ ∪ (𝒫 𝐴 ∩ Fin) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4162 | . . . . . 6 ⊢ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴 | |
2 | 1 | unissi 4848 | . . . . 5 ⊢ ∪ (𝒫 𝐴 ∩ Fin) ⊆ ∪ 𝒫 𝐴 |
3 | unipw 5366 | . . . . 5 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
4 | 2, 3 | sseqtri 3957 | . . . 4 ⊢ ∪ (𝒫 𝐴 ∩ Fin) ⊆ 𝐴 |
5 | 4 | sseli 3917 | . . 3 ⊢ (𝑎 ∈ ∪ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝐴) |
6 | snelpwi 5360 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ∈ 𝒫 𝐴) | |
7 | snfi 8834 | . . . . . . 7 ⊢ {𝑎} ∈ Fin | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ∈ Fin) |
9 | 6, 8 | elind 4128 | . . . . 5 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ∈ (𝒫 𝐴 ∩ Fin)) |
10 | elssuni 4871 | . . . . 5 ⊢ ({𝑎} ∈ (𝒫 𝐴 ∩ Fin) → {𝑎} ⊆ ∪ (𝒫 𝐴 ∩ Fin)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ⊆ ∪ (𝒫 𝐴 ∩ Fin)) |
12 | snidg 4595 | . . . 4 ⊢ (𝑎 ∈ 𝐴 → 𝑎 ∈ {𝑎}) | |
13 | 11, 12 | sseldd 3922 | . . 3 ⊢ (𝑎 ∈ 𝐴 → 𝑎 ∈ ∪ (𝒫 𝐴 ∩ Fin)) |
14 | 5, 13 | impbii 208 | . 2 ⊢ (𝑎 ∈ ∪ (𝒫 𝐴 ∩ Fin) ↔ 𝑎 ∈ 𝐴) |
15 | 14 | eqriv 2735 | 1 ⊢ ∪ (𝒫 𝐴 ∩ Fin) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 {csn 4561 ∪ cuni 4839 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-om 7713 df-1o 8297 df-en 8734 df-fin 8737 |
This theorem is referenced by: isacs5lem 18263 acsmapd 18272 acsmap2d 18273 |
Copyright terms: Public domain | W3C validator |