MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unifpw Structured version   Visualization version   GIF version

Theorem unifpw 9367
Description: A set is the union of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
unifpw (𝒫 𝐴 ∩ Fin) = 𝐴

Proof of Theorem unifpw
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 inss1 4212 . . . . . 6 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
21unissi 4892 . . . . 5 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
3 unipw 5425 . . . . 5 𝒫 𝐴 = 𝐴
42, 3sseqtri 4007 . . . 4 (𝒫 𝐴 ∩ Fin) ⊆ 𝐴
54sseli 3954 . . 3 (𝑎 (𝒫 𝐴 ∩ Fin) → 𝑎𝐴)
6 snelpwi 5418 . . . . . 6 (𝑎𝐴 → {𝑎} ∈ 𝒫 𝐴)
7 snfi 9057 . . . . . . 7 {𝑎} ∈ Fin
87a1i 11 . . . . . 6 (𝑎𝐴 → {𝑎} ∈ Fin)
96, 8elind 4175 . . . . 5 (𝑎𝐴 → {𝑎} ∈ (𝒫 𝐴 ∩ Fin))
10 elssuni 4913 . . . . 5 ({𝑎} ∈ (𝒫 𝐴 ∩ Fin) → {𝑎} ⊆ (𝒫 𝐴 ∩ Fin))
119, 10syl 17 . . . 4 (𝑎𝐴 → {𝑎} ⊆ (𝒫 𝐴 ∩ Fin))
12 snidg 4636 . . . 4 (𝑎𝐴𝑎 ∈ {𝑎})
1311, 12sseldd 3959 . . 3 (𝑎𝐴𝑎 (𝒫 𝐴 ∩ Fin))
145, 13impbii 209 . 2 (𝑎 (𝒫 𝐴 ∩ Fin) ↔ 𝑎𝐴)
1514eqriv 2732 1 (𝒫 𝐴 ∩ Fin) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  cin 3925  wss 3926  𝒫 cpw 4575  {csn 4601   cuni 4883  Fincfn 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-om 7862  df-1o 8480  df-en 8960  df-fin 8963
This theorem is referenced by:  isacs5lem  18555  acsmapd  18564  acsmap2d  18565
  Copyright terms: Public domain W3C validator