![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unifpw | Structured version Visualization version GIF version |
Description: A set is the union of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
unifpw | ⊢ ∪ (𝒫 𝐴 ∩ Fin) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4245 | . . . . . 6 ⊢ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴 | |
2 | 1 | unissi 4921 | . . . . 5 ⊢ ∪ (𝒫 𝐴 ∩ Fin) ⊆ ∪ 𝒫 𝐴 |
3 | unipw 5461 | . . . . 5 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
4 | 2, 3 | sseqtri 4032 | . . . 4 ⊢ ∪ (𝒫 𝐴 ∩ Fin) ⊆ 𝐴 |
5 | 4 | sseli 3991 | . . 3 ⊢ (𝑎 ∈ ∪ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝐴) |
6 | snelpwi 5454 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ∈ 𝒫 𝐴) | |
7 | snfi 9082 | . . . . . . 7 ⊢ {𝑎} ∈ Fin | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ∈ Fin) |
9 | 6, 8 | elind 4210 | . . . . 5 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ∈ (𝒫 𝐴 ∩ Fin)) |
10 | elssuni 4942 | . . . . 5 ⊢ ({𝑎} ∈ (𝒫 𝐴 ∩ Fin) → {𝑎} ⊆ ∪ (𝒫 𝐴 ∩ Fin)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝑎 ∈ 𝐴 → {𝑎} ⊆ ∪ (𝒫 𝐴 ∩ Fin)) |
12 | snidg 4665 | . . . 4 ⊢ (𝑎 ∈ 𝐴 → 𝑎 ∈ {𝑎}) | |
13 | 11, 12 | sseldd 3996 | . . 3 ⊢ (𝑎 ∈ 𝐴 → 𝑎 ∈ ∪ (𝒫 𝐴 ∩ Fin)) |
14 | 5, 13 | impbii 209 | . 2 ⊢ (𝑎 ∈ ∪ (𝒫 𝐴 ∩ Fin) ↔ 𝑎 ∈ 𝐴) |
15 | 14 | eqriv 2732 | 1 ⊢ ∪ (𝒫 𝐴 ∩ Fin) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 𝒫 cpw 4605 {csn 4631 ∪ cuni 4912 Fincfn 8984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-om 7888 df-1o 8505 df-en 8985 df-fin 8988 |
This theorem is referenced by: isacs5lem 18603 acsmapd 18612 acsmap2d 18613 |
Copyright terms: Public domain | W3C validator |