![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fiuni | Structured version Visualization version GIF version |
Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fiuni | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪ (fi‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssfii 9418 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) | |
2 | 1 | unissd 4919 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ⊆ ∪ (fi‘𝐴)) |
3 | fipwuni 9425 | . . . . 5 ⊢ (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴 | |
4 | 3 | unissi 4918 | . . . 4 ⊢ ∪ (fi‘𝐴) ⊆ ∪ 𝒫 ∪ 𝐴 |
5 | unipw 5451 | . . . 4 ⊢ ∪ 𝒫 ∪ 𝐴 = ∪ 𝐴 | |
6 | 4, 5 | sseqtri 4019 | . . 3 ⊢ ∪ (fi‘𝐴) ⊆ ∪ 𝐴 |
7 | 6 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ (fi‘𝐴) ⊆ ∪ 𝐴) |
8 | 2, 7 | eqssd 4000 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪ (fi‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ⊆ wss 3949 𝒫 cpw 4603 ∪ cuni 4909 ‘cfv 6544 ficfi 9409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7860 df-1o 8470 df-er 8707 df-en 8944 df-fin 8947 df-fi 9410 |
This theorem is referenced by: fipwss 9428 ordttopon 22919 ptbasfi 23307 xkouni 23325 alexsublem 23770 alexsub 23771 alexsubb 23772 alexsubALTlem3 23775 alexsubALTlem4 23776 ptcmplem1 23778 topjoin 35555 |
Copyright terms: Public domain | W3C validator |