Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fiuni | Structured version Visualization version GIF version |
Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fiuni | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪ (fi‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssfii 9178 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) | |
2 | 1 | unissd 4849 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ⊆ ∪ (fi‘𝐴)) |
3 | fipwuni 9185 | . . . . 5 ⊢ (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴 | |
4 | 3 | unissi 4848 | . . . 4 ⊢ ∪ (fi‘𝐴) ⊆ ∪ 𝒫 ∪ 𝐴 |
5 | unipw 5366 | . . . 4 ⊢ ∪ 𝒫 ∪ 𝐴 = ∪ 𝐴 | |
6 | 4, 5 | sseqtri 3957 | . . 3 ⊢ ∪ (fi‘𝐴) ⊆ ∪ 𝐴 |
7 | 6 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ (fi‘𝐴) ⊆ ∪ 𝐴) |
8 | 2, 7 | eqssd 3938 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪ (fi‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 ‘cfv 6433 ficfi 9169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-er 8498 df-en 8734 df-fin 8737 df-fi 9170 |
This theorem is referenced by: fipwss 9188 ordttopon 22344 ptbasfi 22732 xkouni 22750 alexsublem 23195 alexsub 23196 alexsubb 23197 alexsubALTlem3 23200 alexsubALTlem4 23201 ptcmplem1 23203 topjoin 34554 |
Copyright terms: Public domain | W3C validator |