| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fiuni | Structured version Visualization version GIF version | ||
| Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| fiuni | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪ (fi‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfii 9377 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) | |
| 2 | 1 | unissd 4884 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ⊆ ∪ (fi‘𝐴)) |
| 3 | fipwuni 9384 | . . . . 5 ⊢ (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴 | |
| 4 | 3 | unissi 4883 | . . . 4 ⊢ ∪ (fi‘𝐴) ⊆ ∪ 𝒫 ∪ 𝐴 |
| 5 | unipw 5413 | . . . 4 ⊢ ∪ 𝒫 ∪ 𝐴 = ∪ 𝐴 | |
| 6 | 4, 5 | sseqtri 3998 | . . 3 ⊢ ∪ (fi‘𝐴) ⊆ ∪ 𝐴 |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ (fi‘𝐴) ⊆ ∪ 𝐴) |
| 8 | 2, 7 | eqssd 3967 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪ (fi‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 ‘cfv 6514 ficfi 9368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-2o 8438 df-en 8922 df-fin 8925 df-fi 9369 |
| This theorem is referenced by: fipwss 9387 ordttopon 23087 ptbasfi 23475 xkouni 23493 alexsublem 23938 alexsub 23939 alexsubb 23940 alexsubALTlem3 23943 alexsubALTlem4 23944 ptcmplem1 23946 topjoin 36360 |
| Copyright terms: Public domain | W3C validator |