MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiuni Structured version   Visualization version   GIF version

Theorem fiuni 9459
Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiuni (𝐴𝑉 𝐴 = (fi‘𝐴))

Proof of Theorem fiuni
StepHypRef Expression
1 ssfii 9450 . . 3 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
21unissd 4922 . 2 (𝐴𝑉 𝐴 (fi‘𝐴))
3 fipwuni 9457 . . . . 5 (fi‘𝐴) ⊆ 𝒫 𝐴
43unissi 4921 . . . 4 (fi‘𝐴) ⊆ 𝒫 𝐴
5 unipw 5456 . . . 4 𝒫 𝐴 = 𝐴
64, 5sseqtri 4018 . . 3 (fi‘𝐴) ⊆ 𝐴
76a1i 11 . 2 (𝐴𝑉 (fi‘𝐴) ⊆ 𝐴)
82, 7eqssd 3999 1 (𝐴𝑉 𝐴 = (fi‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wss 3949  𝒫 cpw 4606   cuni 4912  cfv 6553  ficfi 9441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-om 7877  df-1o 8493  df-er 8731  df-en 8971  df-fin 8974  df-fi 9442
This theorem is referenced by:  fipwss  9460  ordttopon  23117  ptbasfi  23505  xkouni  23523  alexsublem  23968  alexsub  23969  alexsubb  23970  alexsubALTlem3  23973  alexsubALTlem4  23974  ptcmplem1  23976  topjoin  35882
  Copyright terms: Public domain W3C validator