MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isopn3 Structured version   Visualization version   GIF version

Theorem isopn3 22960
Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
isopn3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))

Proof of Theorem isopn3
StepHypRef Expression
1 clscld.1 . . . . 5 𝑋 = 𝐽
21ntrval 22930 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
3 inss2 4204 . . . . . . . 8 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆
43unissi 4883 . . . . . . 7 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆
5 unipw 5413 . . . . . . 7 𝒫 𝑆 = 𝑆
64, 5sseqtri 3998 . . . . . 6 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆
76a1i 11 . . . . 5 (𝑆𝐽 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆)
8 id 22 . . . . . . 7 (𝑆𝐽𝑆𝐽)
9 pwidg 4586 . . . . . . 7 (𝑆𝐽𝑆 ∈ 𝒫 𝑆)
108, 9elind 4166 . . . . . 6 (𝑆𝐽𝑆 ∈ (𝐽 ∩ 𝒫 𝑆))
11 elssuni 4904 . . . . . 6 (𝑆 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑆 (𝐽 ∩ 𝒫 𝑆))
1210, 11syl 17 . . . . 5 (𝑆𝐽𝑆 (𝐽 ∩ 𝒫 𝑆))
137, 12eqssd 3967 . . . 4 (𝑆𝐽 (𝐽 ∩ 𝒫 𝑆) = 𝑆)
142, 13sylan9eq 2785 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑆𝐽) → ((int‘𝐽)‘𝑆) = 𝑆)
1514ex 412 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 → ((int‘𝐽)‘𝑆) = 𝑆))
161ntropn 22943 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
17 eleq1 2817 . . 3 (((int‘𝐽)‘𝑆) = 𝑆 → (((int‘𝐽)‘𝑆) ∈ 𝐽𝑆𝐽))
1816, 17syl5ibcom 245 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = 𝑆𝑆𝐽))
1915, 18impbid 212 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874  cfv 6514  Topctop 22787  intcnt 22911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-top 22788  df-ntr 22914
This theorem is referenced by:  ntridm  22962  ntrtop  22964  ntr0  22975  isopn3i  22976  opnnei  23014  cnntr  23169  llycmpkgen2  23444  dvnres  25840  dvcnvre  25931  taylthlem2  26289  taylthlem2OLD  26290  ulmdvlem3  26318  abelth  26358  opnbnd  36320  ioontr  45516  cncfuni  45891  fperdvper  45924  dirkercncflem3  46110  dirkercncflem4  46111  fourierdlem58  46169  fourierdlem73  46184
  Copyright terms: Public domain W3C validator