| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isopn3 | Structured version Visualization version GIF version | ||
| Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| isopn3 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ntrval 22952 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 3 | inss2 4187 | . . . . . . . 8 ⊢ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆 | |
| 4 | 3 | unissi 4867 | . . . . . . 7 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ ∪ 𝒫 𝑆 |
| 5 | unipw 5393 | . . . . . . 7 ⊢ ∪ 𝒫 𝑆 = 𝑆 | |
| 6 | 4, 5 | sseqtri 3979 | . . . . . 6 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆 |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑆 ∈ 𝐽 → ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆) |
| 8 | id 22 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ∈ 𝐽) | |
| 9 | pwidg 4569 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ∈ 𝒫 𝑆) | |
| 10 | 8, 9 | elind 4149 | . . . . . 6 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ∈ (𝐽 ∩ 𝒫 𝑆)) |
| 11 | elssuni 4889 | . . . . . 6 ⊢ (𝑆 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑆 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 13 | 7, 12 | eqssd 3948 | . . . 4 ⊢ (𝑆 ∈ 𝐽 → ∪ (𝐽 ∩ 𝒫 𝑆) = 𝑆) |
| 14 | 2, 13 | sylan9eq 2788 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
| 15 | 14 | ex 412 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 → ((int‘𝐽)‘𝑆) = 𝑆)) |
| 16 | 1 | ntropn 22965 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
| 17 | eleq1 2821 | . . 3 ⊢ (((int‘𝐽)‘𝑆) = 𝑆 → (((int‘𝐽)‘𝑆) ∈ 𝐽 ↔ 𝑆 ∈ 𝐽)) | |
| 18 | 16, 17 | syl5ibcom 245 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = 𝑆 → 𝑆 ∈ 𝐽)) |
| 19 | 15, 18 | impbid 212 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4549 ∪ cuni 4858 ‘cfv 6486 Topctop 22809 intcnt 22933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-top 22810 df-ntr 22936 |
| This theorem is referenced by: ntridm 22984 ntrtop 22986 ntr0 22997 isopn3i 22998 opnnei 23036 cnntr 23191 llycmpkgen2 23466 dvnres 25861 dvcnvre 25952 taylthlem2 26310 taylthlem2OLD 26311 ulmdvlem3 26339 abelth 26379 opnbnd 36390 ioontr 45636 cncfuni 46009 fperdvper 46042 dirkercncflem3 46228 dirkercncflem4 46229 fourierdlem58 46287 fourierdlem73 46302 |
| Copyright terms: Public domain | W3C validator |