Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isopn3 | Structured version Visualization version GIF version |
Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isopn3 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | ntrval 22187 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
3 | inss2 4163 | . . . . . . . 8 ⊢ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆 | |
4 | 3 | unissi 4848 | . . . . . . 7 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ ∪ 𝒫 𝑆 |
5 | unipw 5366 | . . . . . . 7 ⊢ ∪ 𝒫 𝑆 = 𝑆 | |
6 | 4, 5 | sseqtri 3957 | . . . . . 6 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆 |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑆 ∈ 𝐽 → ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆) |
8 | id 22 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ∈ 𝐽) | |
9 | pwidg 4555 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ∈ 𝒫 𝑆) | |
10 | 8, 9 | elind 4128 | . . . . . 6 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ∈ (𝐽 ∩ 𝒫 𝑆)) |
11 | elssuni 4871 | . . . . . 6 ⊢ (𝑆 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑆 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
13 | 7, 12 | eqssd 3938 | . . . 4 ⊢ (𝑆 ∈ 𝐽 → ∪ (𝐽 ∩ 𝒫 𝑆) = 𝑆) |
14 | 2, 13 | sylan9eq 2798 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
15 | 14 | ex 413 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 → ((int‘𝐽)‘𝑆) = 𝑆)) |
16 | 1 | ntropn 22200 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) |
17 | eleq1 2826 | . . 3 ⊢ (((int‘𝐽)‘𝑆) = 𝑆 → (((int‘𝐽)‘𝑆) ∈ 𝐽 ↔ 𝑆 ∈ 𝐽)) | |
18 | 16, 17 | syl5ibcom 244 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = 𝑆 → 𝑆 ∈ 𝐽)) |
19 | 15, 18 | impbid 211 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 ‘cfv 6433 Topctop 22042 intcnt 22168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-top 22043 df-ntr 22171 |
This theorem is referenced by: ntridm 22219 ntrtop 22221 ntr0 22232 isopn3i 22233 opnnei 22271 cnntr 22426 llycmpkgen2 22701 dvnres 25095 dvcnvre 25183 taylthlem2 25533 ulmdvlem3 25561 abelth 25600 opnbnd 34514 ioontr 43049 cncfuni 43427 fperdvper 43460 dirkercncflem3 43646 dirkercncflem4 43647 fourierdlem58 43705 fourierdlem73 43720 |
Copyright terms: Public domain | W3C validator |