MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isopn3 Structured version   Visualization version   GIF version

Theorem isopn3 21150
Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
isopn3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))

Proof of Theorem isopn3
StepHypRef Expression
1 clscld.1 . . . . 5 𝑋 = 𝐽
21ntrval 21120 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
3 inss2 3993 . . . . . . . 8 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆
43unissi 4619 . . . . . . 7 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆
5 unipw 5074 . . . . . . 7 𝒫 𝑆 = 𝑆
64, 5sseqtri 3797 . . . . . 6 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆
76a1i 11 . . . . 5 (𝑆𝐽 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆)
8 id 22 . . . . . . 7 (𝑆𝐽𝑆𝐽)
9 pwidg 4330 . . . . . . 7 (𝑆𝐽𝑆 ∈ 𝒫 𝑆)
108, 9elind 3960 . . . . . 6 (𝑆𝐽𝑆 ∈ (𝐽 ∩ 𝒫 𝑆))
11 elssuni 4625 . . . . . 6 (𝑆 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑆 (𝐽 ∩ 𝒫 𝑆))
1210, 11syl 17 . . . . 5 (𝑆𝐽𝑆 (𝐽 ∩ 𝒫 𝑆))
137, 12eqssd 3778 . . . 4 (𝑆𝐽 (𝐽 ∩ 𝒫 𝑆) = 𝑆)
142, 13sylan9eq 2819 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑆𝐽) → ((int‘𝐽)‘𝑆) = 𝑆)
1514ex 401 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 → ((int‘𝐽)‘𝑆) = 𝑆))
161ntropn 21133 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
17 eleq1 2832 . . 3 (((int‘𝐽)‘𝑆) = 𝑆 → (((int‘𝐽)‘𝑆) ∈ 𝐽𝑆𝐽))
1816, 17syl5ibcom 236 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = 𝑆𝑆𝐽))
1915, 18impbid 203 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  cin 3731  wss 3732  𝒫 cpw 4315   cuni 4594  cfv 6068  Topctop 20977  intcnt 21101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-top 20978  df-ntr 21104
This theorem is referenced by:  ntridm  21152  ntrtop  21154  ntr0  21165  isopn3i  21166  opnnei  21204  cnntr  21359  llycmpkgen2  21633  dvnres  23985  dvcnvre  24073  taylthlem2  24419  ulmdvlem3  24447  abelth  24486  opnbnd  32695  ioontr  40308  cncfuni  40669  fperdvper  40703  dirkercncflem3  40891  dirkercncflem4  40892  fourierdlem58  40950  fourierdlem73  40965
  Copyright terms: Public domain W3C validator