MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg4i Structured version   Visualization version   GIF version

Theorem eltg4i 22903
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
eltg4i (𝐴 ∈ (topGen‘𝐵) → 𝐴 = (𝐵 ∩ 𝒫 𝐴))

Proof of Theorem eltg4i
StepHypRef Expression
1 elfvdm 6918 . . . 4 (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
2 eltg 22900 . . . 4 (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
31, 2syl 17 . . 3 (𝐴 ∈ (topGen‘𝐵) → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
43ibi 267 . 2 (𝐴 ∈ (topGen‘𝐵) → 𝐴 (𝐵 ∩ 𝒫 𝐴))
5 inss2 4218 . . . . 5 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
65unissi 4897 . . . 4 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
7 unipw 5430 . . . 4 𝒫 𝐴 = 𝐴
86, 7sseqtri 4012 . . 3 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴
98a1i 11 . 2 (𝐴 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴)
104, 9eqssd 3981 1 (𝐴 ∈ (topGen‘𝐵) → 𝐴 = (𝐵 ∩ 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cin 3930  wss 3931  𝒫 cpw 4580   cuni 4888  dom cdm 5659  cfv 6536  topGenctg 17456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-topgen 17462
This theorem is referenced by:  eltg3  22905  tgdom  22921  tgidm  22923  ontgval  36454
  Copyright terms: Public domain W3C validator