MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg4i Structured version   Visualization version   GIF version

Theorem eltg4i 22463
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
eltg4i (𝐴 ∈ (topGenβ€˜π΅) β†’ 𝐴 = βˆͺ (𝐡 ∩ 𝒫 𝐴))

Proof of Theorem eltg4i
StepHypRef Expression
1 elfvdm 6929 . . . 4 (𝐴 ∈ (topGenβ€˜π΅) β†’ 𝐡 ∈ dom topGen)
2 eltg 22460 . . . 4 (𝐡 ∈ dom topGen β†’ (𝐴 ∈ (topGenβ€˜π΅) ↔ 𝐴 βŠ† βˆͺ (𝐡 ∩ 𝒫 𝐴)))
31, 2syl 17 . . 3 (𝐴 ∈ (topGenβ€˜π΅) β†’ (𝐴 ∈ (topGenβ€˜π΅) ↔ 𝐴 βŠ† βˆͺ (𝐡 ∩ 𝒫 𝐴)))
43ibi 267 . 2 (𝐴 ∈ (topGenβ€˜π΅) β†’ 𝐴 βŠ† βˆͺ (𝐡 ∩ 𝒫 𝐴))
5 inss2 4230 . . . . 5 (𝐡 ∩ 𝒫 𝐴) βŠ† 𝒫 𝐴
65unissi 4918 . . . 4 βˆͺ (𝐡 ∩ 𝒫 𝐴) βŠ† βˆͺ 𝒫 𝐴
7 unipw 5451 . . . 4 βˆͺ 𝒫 𝐴 = 𝐴
86, 7sseqtri 4019 . . 3 βˆͺ (𝐡 ∩ 𝒫 𝐴) βŠ† 𝐴
98a1i 11 . 2 (𝐴 ∈ (topGenβ€˜π΅) β†’ βˆͺ (𝐡 ∩ 𝒫 𝐴) βŠ† 𝐴)
104, 9eqssd 4000 1 (𝐴 ∈ (topGenβ€˜π΅) β†’ 𝐴 = βˆͺ (𝐡 ∩ 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1542   ∈ wcel 2107   ∩ cin 3948   βŠ† wss 3949  π’« cpw 4603  βˆͺ cuni 4909  dom cdm 5677  β€˜cfv 6544  topGenctg 17383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-topgen 17389
This theorem is referenced by:  eltg3  22465  tgdom  22481  tgidm  22483  ontgval  35364
  Copyright terms: Public domain W3C validator