![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltg4i | Structured version Visualization version GIF version |
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
eltg4i | β’ (π΄ β (topGenβπ΅) β π΄ = βͺ (π΅ β© π« π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6929 | . . . 4 β’ (π΄ β (topGenβπ΅) β π΅ β dom topGen) | |
2 | eltg 22460 | . . . 4 β’ (π΅ β dom topGen β (π΄ β (topGenβπ΅) β π΄ β βͺ (π΅ β© π« π΄))) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π΄ β (topGenβπ΅) β (π΄ β (topGenβπ΅) β π΄ β βͺ (π΅ β© π« π΄))) |
4 | 3 | ibi 267 | . 2 β’ (π΄ β (topGenβπ΅) β π΄ β βͺ (π΅ β© π« π΄)) |
5 | inss2 4230 | . . . . 5 β’ (π΅ β© π« π΄) β π« π΄ | |
6 | 5 | unissi 4918 | . . . 4 β’ βͺ (π΅ β© π« π΄) β βͺ π« π΄ |
7 | unipw 5451 | . . . 4 β’ βͺ π« π΄ = π΄ | |
8 | 6, 7 | sseqtri 4019 | . . 3 β’ βͺ (π΅ β© π« π΄) β π΄ |
9 | 8 | a1i 11 | . 2 β’ (π΄ β (topGenβπ΅) β βͺ (π΅ β© π« π΄) β π΄) |
10 | 4, 9 | eqssd 4000 | 1 β’ (π΄ β (topGenβπ΅) β π΄ = βͺ (π΅ β© π« π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1542 β wcel 2107 β© cin 3948 β wss 3949 π« cpw 4603 βͺ cuni 4909 dom cdm 5677 βcfv 6544 topGenctg 17383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-topgen 17389 |
This theorem is referenced by: eltg3 22465 tgdom 22481 tgidm 22483 ontgval 35364 |
Copyright terms: Public domain | W3C validator |