Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  up1st2ndr Structured version   Visualization version   GIF version

Theorem up1st2ndr 49347
Description: Combine separated parts in the universal property predicate. (Contributed by Zhi Wang, 23-Oct-2025.)
Hypotheses
Ref Expression
up1st2ndr.1 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
up1st2ndr.2 (𝜑𝑋(⟨(1st𝐹), (2nd𝐹)⟩(𝐷 UP 𝐸)𝑊)𝑀)
Assertion
Ref Expression
up1st2ndr (𝜑𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀)

Proof of Theorem up1st2ndr
StepHypRef Expression
1 relfunc 17777 . . . . 5 Rel (𝐷 Func 𝐸)
2 up1st2ndr.1 . . . . 5 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
3 1st2nd 7980 . . . . 5 ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
41, 2, 3sylancr 587 . . . 4 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
54oveq1d 7370 . . 3 (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = (⟨(1st𝐹), (2nd𝐹)⟩(𝐷 UP 𝐸)𝑊))
65eqcomd 2739 . 2 (𝜑 → (⟨(1st𝐹), (2nd𝐹)⟩(𝐷 UP 𝐸)𝑊) = (𝐹(𝐷 UP 𝐸)𝑊))
7 up1st2ndr.2 . 2 (𝜑𝑋(⟨(1st𝐹), (2nd𝐹)⟩(𝐷 UP 𝐸)𝑊)𝑀)
86, 7breqdi 5110 1 (𝜑𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cop 4583   class class class wbr 5095  Rel wrel 5626  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929   Func cfunc 17769   UP cup 49334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-func 17773
This theorem is referenced by:  up1st2ndb  49348
  Copyright terms: Public domain W3C validator