| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > up1st2ndr | Structured version Visualization version GIF version | ||
| Description: Combine separated parts in the universal property predicate. (Contributed by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| up1st2ndr.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) |
| up1st2ndr.2 | ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) |
| Ref | Expression |
|---|---|
| up1st2ndr | ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17830 | . . . . 5 ⊢ Rel (𝐷 Func 𝐸) | |
| 2 | up1st2ndr.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) | |
| 3 | 1st2nd 8020 | . . . . 5 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 5 | 4 | oveq1d 7404 | . . 3 ⊢ (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = (〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)) |
| 6 | 5 | eqcomd 2736 | . 2 ⊢ (𝜑 → (〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊) = (𝐹(𝐷 UP 𝐸)𝑊)) |
| 7 | up1st2ndr.2 | . 2 ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) | |
| 8 | 6, 7 | breqdi 5124 | 1 ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4597 class class class wbr 5109 Rel wrel 5645 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 2nd c2nd 7969 Func cfunc 17822 UP cup 49146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-func 17826 |
| This theorem is referenced by: up1st2ndb 49160 |
| Copyright terms: Public domain | W3C validator |