| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > up1st2ndr | Structured version Visualization version GIF version | ||
| Description: Combine separated parts in the universal property predicate. (Contributed by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| up1st2ndr.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) |
| up1st2ndr.2 | ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) |
| Ref | Expression |
|---|---|
| up1st2ndr | ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17800 | . . . . 5 ⊢ Rel (𝐷 Func 𝐸) | |
| 2 | up1st2ndr.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) | |
| 3 | 1st2nd 7997 | . . . . 5 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 5 | 4 | oveq1d 7384 | . . 3 ⊢ (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = (〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)) |
| 6 | 5 | eqcomd 2735 | . 2 ⊢ (𝜑 → (〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊) = (𝐹(𝐷 UP 𝐸)𝑊)) |
| 7 | up1st2ndr.2 | . 2 ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) | |
| 8 | 6, 7 | breqdi 5117 | 1 ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 Rel wrel 5636 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 Func cfunc 17792 UP cup 49135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-func 17796 |
| This theorem is referenced by: up1st2ndb 49149 |
| Copyright terms: Public domain | W3C validator |