| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > up1st2ndr | Structured version Visualization version GIF version | ||
| Description: Combine separated parts in the universal property predicate. (Contributed by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| up1st2ndr.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) |
| up1st2ndr.2 | ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷UP𝐸)𝑊)𝑀) |
| Ref | Expression |
|---|---|
| up1st2ndr | ⊢ (𝜑 → 𝑋(𝐹(𝐷UP𝐸)𝑊)𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17879 | . . . . 5 ⊢ Rel (𝐷 Func 𝐸) | |
| 2 | up1st2ndr.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) | |
| 3 | 1st2nd 8046 | . . . . 5 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 5 | 4 | oveq1d 7428 | . . 3 ⊢ (𝜑 → (𝐹(𝐷UP𝐸)𝑊) = (〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷UP𝐸)𝑊)) |
| 6 | 5 | eqcomd 2740 | . 2 ⊢ (𝜑 → (〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷UP𝐸)𝑊) = (𝐹(𝐷UP𝐸)𝑊)) |
| 7 | up1st2ndr.2 | . 2 ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷UP𝐸)𝑊)𝑀) | |
| 8 | 6, 7 | breqdi 5138 | 1 ⊢ (𝜑 → 𝑋(𝐹(𝐷UP𝐸)𝑊)𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 〈cop 4612 class class class wbr 5123 Rel wrel 5670 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 2nd c2nd 7995 Func cfunc 17871 UPcup 48957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-func 17875 |
| This theorem is referenced by: up1st2ndb 48970 |
| Copyright terms: Public domain | W3C validator |