Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  up1st2ndr Structured version   Visualization version   GIF version

Theorem up1st2ndr 48969
Description: Combine separated parts in the universal property predicate. (Contributed by Zhi Wang, 23-Oct-2025.)
Hypotheses
Ref Expression
up1st2ndr.1 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
up1st2ndr.2 (𝜑𝑋(⟨(1st𝐹), (2nd𝐹)⟩(𝐷UP𝐸)𝑊)𝑀)
Assertion
Ref Expression
up1st2ndr (𝜑𝑋(𝐹(𝐷UP𝐸)𝑊)𝑀)

Proof of Theorem up1st2ndr
StepHypRef Expression
1 relfunc 17879 . . . . 5 Rel (𝐷 Func 𝐸)
2 up1st2ndr.1 . . . . 5 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
3 1st2nd 8046 . . . . 5 ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
41, 2, 3sylancr 587 . . . 4 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
54oveq1d 7428 . . 3 (𝜑 → (𝐹(𝐷UP𝐸)𝑊) = (⟨(1st𝐹), (2nd𝐹)⟩(𝐷UP𝐸)𝑊))
65eqcomd 2740 . 2 (𝜑 → (⟨(1st𝐹), (2nd𝐹)⟩(𝐷UP𝐸)𝑊) = (𝐹(𝐷UP𝐸)𝑊))
7 up1st2ndr.2 . 2 (𝜑𝑋(⟨(1st𝐹), (2nd𝐹)⟩(𝐷UP𝐸)𝑊)𝑀)
86, 7breqdi 5138 1 (𝜑𝑋(𝐹(𝐷UP𝐸)𝑊)𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cop 4612   class class class wbr 5123  Rel wrel 5670  cfv 6541  (class class class)co 7413  1st c1st 7994  2nd c2nd 7995   Func cfunc 17871  UPcup 48957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-func 17875
This theorem is referenced by:  up1st2ndb  48970
  Copyright terms: Public domain W3C validator