| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > up1st2ndr | Structured version Visualization version GIF version | ||
| Description: Combine separated parts in the universal property predicate. (Contributed by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| up1st2ndr.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) |
| up1st2ndr.2 | ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) |
| Ref | Expression |
|---|---|
| up1st2ndr | ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17777 | . . . . 5 ⊢ Rel (𝐷 Func 𝐸) | |
| 2 | up1st2ndr.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) | |
| 3 | 1st2nd 7980 | . . . . 5 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 5 | 4 | oveq1d 7370 | . . 3 ⊢ (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = (〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)) |
| 6 | 5 | eqcomd 2739 | . 2 ⊢ (𝜑 → (〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊) = (𝐹(𝐷 UP 𝐸)𝑊)) |
| 7 | up1st2ndr.2 | . 2 ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) | |
| 8 | 6, 7 | breqdi 5110 | 1 ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 〈cop 4583 class class class wbr 5095 Rel wrel 5626 ‘cfv 6489 (class class class)co 7355 1st c1st 7928 2nd c2nd 7929 Func cfunc 17769 UP cup 49334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-func 17773 |
| This theorem is referenced by: up1st2ndb 49348 |
| Copyright terms: Public domain | W3C validator |