| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > up1st2nd | Structured version Visualization version GIF version | ||
| Description: Rewrite the universal property predicate with separated parts. (Contributed by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| up1st2nd.1 | ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) |
| Ref | Expression |
|---|---|
| up1st2nd | ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17764 | . . . 4 ⊢ Rel (𝐷 Func 𝐸) | |
| 2 | up1st2nd.1 | . . . . . . 7 ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) | |
| 3 | df-br 5087 | . . . . . . 7 ⊢ (𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀 ↔ 〈𝑋, 𝑀〉 ∈ (𝐹(𝐷 UP 𝐸)𝑊)) | |
| 4 | 2, 3 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 〈𝑋, 𝑀〉 ∈ (𝐹(𝐷 UP 𝐸)𝑊)) |
| 5 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 6 | 5 | uprcl 49216 | . . . . . 6 ⊢ (〈𝑋, 𝑀〉 ∈ (𝐹(𝐷 UP 𝐸)𝑊) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸))) |
| 7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸))) |
| 8 | 7 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) |
| 9 | 1st2nd 7966 | . . . 4 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 10 | 1, 8, 9 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 11 | 10 | oveq1d 7356 | . 2 ⊢ (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = (〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)) |
| 12 | 11, 2 | breqdi 5101 | 1 ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4577 class class class wbr 5086 Rel wrel 5616 ‘cfv 6476 (class class class)co 7341 1st c1st 7914 2nd c2nd 7915 Basecbs 17115 Func cfunc 17756 UP cup 49205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-func 17760 df-up 49206 |
| This theorem is referenced by: up1st2ndb 49219 uobrcl 49225 uptrar 49248 uptrai 49249 isinito2 49531 isinito3 49532 lanrcl4 49666 lanrcl5 49667 islmd 49697 iscmd 49698 lmddu 49699 cmddu 49700 lmdran 49703 cmdlan 49704 |
| Copyright terms: Public domain | W3C validator |