Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  up1st2nd Structured version   Visualization version   GIF version

Theorem up1st2nd 49158
Description: Rewrite the universal property predicate with separated parts. (Contributed by Zhi Wang, 23-Oct-2025.)
Hypothesis
Ref Expression
up1st2nd.1 (𝜑𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀)
Assertion
Ref Expression
up1st2nd (𝜑𝑋(⟨(1st𝐹), (2nd𝐹)⟩(𝐷 UP 𝐸)𝑊)𝑀)

Proof of Theorem up1st2nd
StepHypRef Expression
1 relfunc 17830 . . . 4 Rel (𝐷 Func 𝐸)
2 up1st2nd.1 . . . . . . 7 (𝜑𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀)
3 df-br 5110 . . . . . . 7 (𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀 ↔ ⟨𝑋, 𝑀⟩ ∈ (𝐹(𝐷 UP 𝐸)𝑊))
42, 3sylib 218 . . . . . 6 (𝜑 → ⟨𝑋, 𝑀⟩ ∈ (𝐹(𝐷 UP 𝐸)𝑊))
5 eqid 2730 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
65uprcl 49157 . . . . . 6 (⟨𝑋, 𝑀⟩ ∈ (𝐹(𝐷 UP 𝐸)𝑊) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸)))
74, 6syl 17 . . . . 5 (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸)))
87simpld 494 . . . 4 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
9 1st2nd 8020 . . . 4 ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
101, 8, 9sylancr 587 . . 3 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
1110oveq1d 7404 . 2 (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = (⟨(1st𝐹), (2nd𝐹)⟩(𝐷 UP 𝐸)𝑊))
1211, 2breqdi 5124 1 (𝜑𝑋(⟨(1st𝐹), (2nd𝐹)⟩(𝐷 UP 𝐸)𝑊)𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4597   class class class wbr 5109  Rel wrel 5645  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  Basecbs 17185   Func cfunc 17822   UP cup 49146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-func 17826  df-up 49147
This theorem is referenced by:  up1st2ndb  49160  uobrcl  49166  uptrar  49189  uptrai  49190  isinito2  49468  isinito3  49469  lanrcl4  49602  lanrcl5  49603  islmd  49633  iscmd  49634  lmddu  49635  cmddu  49636
  Copyright terms: Public domain W3C validator