| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > up1st2nd | Structured version Visualization version GIF version | ||
| Description: Rewrite the universal property predicate with separated parts. (Contributed by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| up1st2nd.1 | ⊢ (𝜑 → 𝑋(𝐹(𝐷UP𝐸)𝑊)𝑀) |
| Ref | Expression |
|---|---|
| up1st2nd | ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷UP𝐸)𝑊)𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17879 | . . . 4 ⊢ Rel (𝐷 Func 𝐸) | |
| 2 | up1st2nd.1 | . . . . . . 7 ⊢ (𝜑 → 𝑋(𝐹(𝐷UP𝐸)𝑊)𝑀) | |
| 3 | df-br 5124 | . . . . . . 7 ⊢ (𝑋(𝐹(𝐷UP𝐸)𝑊)𝑀 ↔ 〈𝑋, 𝑀〉 ∈ (𝐹(𝐷UP𝐸)𝑊)) | |
| 4 | 2, 3 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 〈𝑋, 𝑀〉 ∈ (𝐹(𝐷UP𝐸)𝑊)) |
| 5 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 6 | 5 | uprcl 48967 | . . . . . 6 ⊢ (〈𝑋, 𝑀〉 ∈ (𝐹(𝐷UP𝐸)𝑊) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸))) |
| 7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸))) |
| 8 | 7 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) |
| 9 | 1st2nd 8046 | . . . 4 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 10 | 1, 8, 9 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 11 | 10 | oveq1d 7428 | . 2 ⊢ (𝜑 → (𝐹(𝐷UP𝐸)𝑊) = (〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷UP𝐸)𝑊)) |
| 12 | 11, 2 | breqdi 5138 | 1 ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷UP𝐸)𝑊)𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 〈cop 4612 class class class wbr 5123 Rel wrel 5670 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 2nd c2nd 7995 Basecbs 17230 Func cfunc 17871 UPcup 48957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-func 17875 df-up 48958 |
| This theorem is referenced by: up1st2ndb 48970 isinito2 49197 isinito3 49198 |
| Copyright terms: Public domain | W3C validator |