| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > up1st2nd | Structured version Visualization version GIF version | ||
| Description: Rewrite the universal property predicate with separated parts. (Contributed by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| up1st2nd.1 | ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) |
| Ref | Expression |
|---|---|
| up1st2nd | ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17800 | . . . 4 ⊢ Rel (𝐷 Func 𝐸) | |
| 2 | up1st2nd.1 | . . . . . . 7 ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) | |
| 3 | df-br 5103 | . . . . . . 7 ⊢ (𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀 ↔ 〈𝑋, 𝑀〉 ∈ (𝐹(𝐷 UP 𝐸)𝑊)) | |
| 4 | 2, 3 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 〈𝑋, 𝑀〉 ∈ (𝐹(𝐷 UP 𝐸)𝑊)) |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 6 | 5 | uprcl 49146 | . . . . . 6 ⊢ (〈𝑋, 𝑀〉 ∈ (𝐹(𝐷 UP 𝐸)𝑊) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸))) |
| 7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸))) |
| 8 | 7 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) |
| 9 | 1st2nd 7997 | . . . 4 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 10 | 1, 8, 9 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 11 | 10 | oveq1d 7384 | . 2 ⊢ (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = (〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)) |
| 12 | 11, 2 | breqdi 5117 | 1 ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 Rel wrel 5636 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 Basecbs 17155 Func cfunc 17792 UP cup 49135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-func 17796 df-up 49136 |
| This theorem is referenced by: up1st2ndb 49149 uobrcl 49155 uptrar 49178 uptrai 49179 isinito2 49461 isinito3 49462 lanrcl4 49596 lanrcl5 49597 islmd 49627 iscmd 49628 lmddu 49629 cmddu 49630 lmdran 49633 cmdlan 49634 |
| Copyright terms: Public domain | W3C validator |