| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > up1st2nd | Structured version Visualization version GIF version | ||
| Description: Rewrite the universal property predicate with separated parts. (Contributed by Zhi Wang, 23-Oct-2025.) |
| Ref | Expression |
|---|---|
| up1st2nd.1 | ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) |
| Ref | Expression |
|---|---|
| up1st2nd | ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17777 | . . . 4 ⊢ Rel (𝐷 Func 𝐸) | |
| 2 | up1st2nd.1 | . . . . . . 7 ⊢ (𝜑 → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀) | |
| 3 | df-br 5096 | . . . . . . 7 ⊢ (𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀 ↔ 〈𝑋, 𝑀〉 ∈ (𝐹(𝐷 UP 𝐸)𝑊)) | |
| 4 | 2, 3 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 〈𝑋, 𝑀〉 ∈ (𝐹(𝐷 UP 𝐸)𝑊)) |
| 5 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 6 | 5 | uprcl 49345 | . . . . . 6 ⊢ (〈𝑋, 𝑀〉 ∈ (𝐹(𝐷 UP 𝐸)𝑊) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸))) |
| 7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸))) |
| 8 | 7 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) |
| 9 | 1st2nd 7980 | . . . 4 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 10 | 1, 8, 9 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 11 | 10 | oveq1d 7370 | . 2 ⊢ (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = (〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)) |
| 12 | 11, 2 | breqdi 5110 | 1 ⊢ (𝜑 → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 〈cop 4583 class class class wbr 5095 Rel wrel 5626 ‘cfv 6489 (class class class)co 7355 1st c1st 7928 2nd c2nd 7929 Basecbs 17127 Func cfunc 17769 UP cup 49334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-func 17773 df-up 49335 |
| This theorem is referenced by: up1st2ndb 49348 uobrcl 49354 uptrar 49377 uptrai 49378 isinito2 49660 isinito3 49661 lanrcl4 49795 lanrcl5 49796 islmd 49826 iscmd 49827 lmddu 49828 cmddu 49829 lmdran 49832 cmdlan 49833 |
| Copyright terms: Public domain | W3C validator |