Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  up1st2nd Structured version   Visualization version   GIF version

Theorem up1st2nd 49147
Description: Rewrite the universal property predicate with separated parts. (Contributed by Zhi Wang, 23-Oct-2025.)
Hypothesis
Ref Expression
up1st2nd.1 (𝜑𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀)
Assertion
Ref Expression
up1st2nd (𝜑𝑋(⟨(1st𝐹), (2nd𝐹)⟩(𝐷 UP 𝐸)𝑊)𝑀)

Proof of Theorem up1st2nd
StepHypRef Expression
1 relfunc 17800 . . . 4 Rel (𝐷 Func 𝐸)
2 up1st2nd.1 . . . . . . 7 (𝜑𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀)
3 df-br 5103 . . . . . . 7 (𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑀 ↔ ⟨𝑋, 𝑀⟩ ∈ (𝐹(𝐷 UP 𝐸)𝑊))
42, 3sylib 218 . . . . . 6 (𝜑 → ⟨𝑋, 𝑀⟩ ∈ (𝐹(𝐷 UP 𝐸)𝑊))
5 eqid 2729 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
65uprcl 49146 . . . . . 6 (⟨𝑋, 𝑀⟩ ∈ (𝐹(𝐷 UP 𝐸)𝑊) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸)))
74, 6syl 17 . . . . 5 (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸)))
87simpld 494 . . . 4 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
9 1st2nd 7997 . . . 4 ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
101, 8, 9sylancr 587 . . 3 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
1110oveq1d 7384 . 2 (𝜑 → (𝐹(𝐷 UP 𝐸)𝑊) = (⟨(1st𝐹), (2nd𝐹)⟩(𝐷 UP 𝐸)𝑊))
1211, 2breqdi 5117 1 (𝜑𝑋(⟨(1st𝐹), (2nd𝐹)⟩(𝐷 UP 𝐸)𝑊)𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4591   class class class wbr 5102  Rel wrel 5636  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Basecbs 17155   Func cfunc 17792   UP cup 49135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-func 17796  df-up 49136
This theorem is referenced by:  up1st2ndb  49149  uobrcl  49155  uptrar  49178  uptrai  49179  isinito2  49461  isinito3  49462  lanrcl4  49596  lanrcl5  49597  islmd  49627  iscmd  49628  lmddu  49629  cmddu  49630  lmdran  49633  cmdlan  49634
  Copyright terms: Public domain W3C validator