| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrstrrepe | Structured version Visualization version GIF version | ||
| Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a hypergraph. Instead of requiring (𝜑 → 𝐺 Struct 𝑋), it would be sufficient to require (𝜑 → Fun (𝐺 ∖ {∅})) and (𝜑 → 𝐺 ∈ V). (Contributed by AV, 18-Jan-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| Ref | Expression |
|---|---|
| uhgrstrrepe.v | ⊢ 𝑉 = (Base‘𝐺) |
| uhgrstrrepe.i | ⊢ 𝐼 = (.ef‘ndx) |
| uhgrstrrepe.s | ⊢ (𝜑 → 𝐺 Struct 𝑋) |
| uhgrstrrepe.b | ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) |
| uhgrstrrepe.w | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| uhgrstrrepe.e | ⊢ (𝜑 → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
| Ref | Expression |
|---|---|
| uhgrstrrepe | ⊢ (𝜑 → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrstrrepe.e | . . . 4 ⊢ (𝜑 → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) | |
| 2 | uhgrstrrepe.i | . . . . . . . . 9 ⊢ 𝐼 = (.ef‘ndx) | |
| 3 | uhgrstrrepe.s | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 Struct 𝑋) | |
| 4 | uhgrstrrepe.b | . . . . . . . . 9 ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) | |
| 5 | uhgrstrrepe.w | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 6 | 2, 3, 4, 5 | setsvtx 29011 | . . . . . . . 8 ⊢ (𝜑 → (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (Base‘𝐺)) |
| 7 | uhgrstrrepe.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝐺) | |
| 8 | 6, 7 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝜑 → (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝑉) |
| 9 | 8 | pweqd 4567 | . . . . . 6 ⊢ (𝜑 → 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝒫 𝑉) |
| 10 | 9 | difeq1d 4075 | . . . . 5 ⊢ (𝜑 → (𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅}) = (𝒫 𝑉 ∖ {∅})) |
| 11 | 10 | feq3d 6636 | . . . 4 ⊢ (𝜑 → (𝐸:dom 𝐸⟶(𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
| 12 | 1, 11 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅})) |
| 13 | 2, 3, 4, 5 | setsiedg 29012 | . . . 4 ⊢ (𝜑 → (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝐸) |
| 14 | 13 | dmeqd 5845 | . . . 4 ⊢ (𝜑 → dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = dom 𝐸) |
| 15 | 13, 14 | feq12d 6639 | . . 3 ⊢ (𝜑 → ((iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))⟶(𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅}))) |
| 16 | 12, 15 | mpbird 257 | . 2 ⊢ (𝜑 → (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))⟶(𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅})) |
| 17 | ovex 7379 | . . 3 ⊢ (𝐺 sSet 〈𝐼, 𝐸〉) ∈ V | |
| 18 | eqid 2731 | . . . 4 ⊢ (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) | |
| 19 | eqid 2731 | . . . 4 ⊢ (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) | |
| 20 | 18, 19 | isuhgr 29036 | . . 3 ⊢ ((𝐺 sSet 〈𝐼, 𝐸〉) ∈ V → ((𝐺 sSet 〈𝐼, 𝐸〉) ∈ UHGraph ↔ (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))⟶(𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅}))) |
| 21 | 17, 20 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐺 sSet 〈𝐼, 𝐸〉) ∈ UHGraph ↔ (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))⟶(𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅}))) |
| 22 | 16, 21 | mpbird 257 | 1 ⊢ (𝜑 → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3899 ∅c0 4283 𝒫 cpw 4550 {csn 4576 〈cop 4582 class class class wbr 5091 dom cdm 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Struct cstr 17054 sSet csts 17071 ndxcnx 17101 Basecbs 17117 .efcedgf 28964 Vtxcvtx 28972 iEdgciedg 28973 UHGraphcuhgr 29032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9791 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-xnn0 12452 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-hash 14235 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-edgf 28965 df-vtx 28974 df-iedg 28975 df-uhgr 29034 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |