MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrstrrepe Structured version   Visualization version   GIF version

Theorem uhgrstrrepe 26426
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a hypergraph. Instead of requiring (𝜑𝐺 Struct 𝑋), it would be sufficient to require (𝜑 → Fun (𝐺 ∖ {∅})) and (𝜑𝐺 ∈ V). (Contributed by AV, 18-Jan-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
uhgrstrrepe.v 𝑉 = (Base‘𝐺)
uhgrstrrepe.i 𝐼 = (.ef‘ndx)
uhgrstrrepe.s (𝜑𝐺 Struct 𝑋)
uhgrstrrepe.b (𝜑 → (Base‘ndx) ∈ dom 𝐺)
uhgrstrrepe.w (𝜑𝐸𝑊)
uhgrstrrepe.e (𝜑𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
Assertion
Ref Expression
uhgrstrrepe (𝜑 → (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ UHGraph)

Proof of Theorem uhgrstrrepe
StepHypRef Expression
1 uhgrstrrepe.e . . . 4 (𝜑𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
2 uhgrstrrepe.i . . . . . . . . 9 𝐼 = (.ef‘ndx)
3 uhgrstrrepe.s . . . . . . . . 9 (𝜑𝐺 Struct 𝑋)
4 uhgrstrrepe.b . . . . . . . . 9 (𝜑 → (Base‘ndx) ∈ dom 𝐺)
5 uhgrstrrepe.w . . . . . . . . 9 (𝜑𝐸𝑊)
62, 3, 4, 5setsvtx 26383 . . . . . . . 8 (𝜑 → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Base‘𝐺))
7 uhgrstrrepe.v . . . . . . . 8 𝑉 = (Base‘𝐺)
86, 7syl6eqr 2831 . . . . . . 7 (𝜑 → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝑉)
98pweqd 4383 . . . . . 6 (𝜑 → 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝒫 𝑉)
109difeq1d 3949 . . . . 5 (𝜑 → (𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
1110feq3d 6278 . . . 4 (𝜑 → (𝐸:dom 𝐸⟶(𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
121, 11mpbird 249 . . 3 (𝜑𝐸:dom 𝐸⟶(𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅}))
132, 3, 4, 5setsiedg 26384 . . . 4 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝐸)
1413dmeqd 5571 . . . 4 (𝜑 → dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = dom 𝐸)
1513, 14feq12d 6279 . . 3 (𝜑 → ((iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))⟶(𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅})))
1612, 15mpbird 249 . 2 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))⟶(𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅}))
17 ovex 6954 . . 3 (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V
18 eqid 2777 . . . 4 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩))
19 eqid 2777 . . . 4 (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))
2018, 19isuhgr 26408 . . 3 ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ UHGraph ↔ (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))⟶(𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅})))
2117, 20mp1i 13 . 2 (𝜑 → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ UHGraph ↔ (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))⟶(𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∖ {∅})))
2216, 21mpbird 249 1 (𝜑 → (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1601  wcel 2106  Vcvv 3397  cdif 3788  c0 4140  𝒫 cpw 4378  {csn 4397  cop 4403   class class class wbr 4886  dom cdm 5355  wf 6131  cfv 6135  (class class class)co 6922   Struct cstr 16251  ndxcnx 16252   sSet csts 16253  Basecbs 16255  .efcedgf 26337  Vtxcvtx 26344  iEdgciedg 26345  UHGraphcuhgr 26404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-xnn0 11715  df-z 11729  df-dec 11846  df-uz 11993  df-fz 12644  df-hash 13436  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-edgf 26338  df-vtx 26346  df-iedg 26347  df-uhgr 26406
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator