MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgr1v Structured version   Visualization version   GIF version

Theorem cplgr1v 27700
Description: A graph with one vertex is complete. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
cplgr0v.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cplgr1v ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph)

Proof of Theorem cplgr1v
Dummy variables 𝑣 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → 𝑣𝑉)
2 ral0 4440 . . . . 5 𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣)
3 cplgr0v.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
43fvexi 6770 . . . . . . . . 9 𝑉 ∈ V
5 hash1snb 14062 . . . . . . . . 9 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛}))
64, 5ax-mp 5 . . . . . . . 8 ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛})
7 velsn 4574 . . . . . . . . . . . 12 (𝑣 ∈ {𝑛} ↔ 𝑣 = 𝑛)
8 sneq 4568 . . . . . . . . . . . . . 14 (𝑣 = 𝑛 → {𝑣} = {𝑛})
98difeq2d 4053 . . . . . . . . . . . . 13 (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ({𝑛} ∖ {𝑛}))
10 difid 4301 . . . . . . . . . . . . 13 ({𝑛} ∖ {𝑛}) = ∅
119, 10eqtrdi 2795 . . . . . . . . . . . 12 (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ∅)
127, 11sylbi 216 . . . . . . . . . . 11 (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅)
1312a1i 11 . . . . . . . . . 10 (𝑉 = {𝑛} → (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅))
14 eleq2 2827 . . . . . . . . . 10 (𝑉 = {𝑛} → (𝑣𝑉𝑣 ∈ {𝑛}))
15 difeq1 4046 . . . . . . . . . . 11 (𝑉 = {𝑛} → (𝑉 ∖ {𝑣}) = ({𝑛} ∖ {𝑣}))
1615eqeq1d 2740 . . . . . . . . . 10 (𝑉 = {𝑛} → ((𝑉 ∖ {𝑣}) = ∅ ↔ ({𝑛} ∖ {𝑣}) = ∅))
1713, 14, 163imtr4d 293 . . . . . . . . 9 (𝑉 = {𝑛} → (𝑣𝑉 → (𝑉 ∖ {𝑣}) = ∅))
1817exlimiv 1934 . . . . . . . 8 (∃𝑛 𝑉 = {𝑛} → (𝑣𝑉 → (𝑉 ∖ {𝑣}) = ∅))
196, 18sylbi 216 . . . . . . 7 ((♯‘𝑉) = 1 → (𝑣𝑉 → (𝑉 ∖ {𝑣}) = ∅))
2019imp 406 . . . . . 6 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → (𝑉 ∖ {𝑣}) = ∅)
2120raleqdv 3339 . . . . 5 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
222, 21mpbiri 257 . . . 4 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))
233uvtxel 27658 . . . 4 (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
241, 22, 23sylanbrc 582 . . 3 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → 𝑣 ∈ (UnivVtx‘𝐺))
2524ralrimiva 3107 . 2 ((♯‘𝑉) = 1 → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
263cplgr1vlem 27699 . . 3 ((♯‘𝑉) = 1 → 𝐺 ∈ V)
273iscplgr 27685 . . 3 (𝐺 ∈ V → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
2826, 27syl 17 . 2 ((♯‘𝑉) = 1 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
2925, 28mpbird 256 1 ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  c0 4253  {csn 4558  cfv 6418  (class class class)co 7255  1c1 10803  chash 13972  Vtxcvtx 27269   NeighbVtx cnbgr 27602  UnivVtxcuvtx 27655  ComplGraphccplgr 27679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-uvtx 27656  df-cplgr 27681
This theorem is referenced by:  cusgr1v  27701
  Copyright terms: Public domain W3C validator