| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cplgr1v | Structured version Visualization version GIF version | ||
| Description: A graph with one vertex is complete. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.) |
| Ref | Expression |
|---|---|
| cplgr0v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| cplgr1v | ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
| 2 | ral0 4488 | . . . . 5 ⊢ ∀𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣) | |
| 3 | cplgr0v.v | . . . . . . . . . 10 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | 3 | fvexi 6890 | . . . . . . . . 9 ⊢ 𝑉 ∈ V |
| 5 | hash1snb 14437 | . . . . . . . . 9 ⊢ (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛})) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . . 8 ⊢ ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛}) |
| 7 | velsn 4617 | . . . . . . . . . . . 12 ⊢ (𝑣 ∈ {𝑛} ↔ 𝑣 = 𝑛) | |
| 8 | sneq 4611 | . . . . . . . . . . . . . 14 ⊢ (𝑣 = 𝑛 → {𝑣} = {𝑛}) | |
| 9 | 8 | difeq2d 4101 | . . . . . . . . . . . . 13 ⊢ (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ({𝑛} ∖ {𝑛})) |
| 10 | difid 4351 | . . . . . . . . . . . . 13 ⊢ ({𝑛} ∖ {𝑛}) = ∅ | |
| 11 | 9, 10 | eqtrdi 2786 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ∅) |
| 12 | 7, 11 | sylbi 217 | . . . . . . . . . . 11 ⊢ (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅) |
| 13 | 12 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑛} → (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅)) |
| 14 | eleq2 2823 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑛} → (𝑣 ∈ 𝑉 ↔ 𝑣 ∈ {𝑛})) | |
| 15 | difeq1 4094 | . . . . . . . . . . 11 ⊢ (𝑉 = {𝑛} → (𝑉 ∖ {𝑣}) = ({𝑛} ∖ {𝑣})) | |
| 16 | 15 | eqeq1d 2737 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑛} → ((𝑉 ∖ {𝑣}) = ∅ ↔ ({𝑛} ∖ {𝑣}) = ∅)) |
| 17 | 13, 14, 16 | 3imtr4d 294 | . . . . . . . . 9 ⊢ (𝑉 = {𝑛} → (𝑣 ∈ 𝑉 → (𝑉 ∖ {𝑣}) = ∅)) |
| 18 | 17 | exlimiv 1930 | . . . . . . . 8 ⊢ (∃𝑛 𝑉 = {𝑛} → (𝑣 ∈ 𝑉 → (𝑉 ∖ {𝑣}) = ∅)) |
| 19 | 6, 18 | sylbi 217 | . . . . . . 7 ⊢ ((♯‘𝑉) = 1 → (𝑣 ∈ 𝑉 → (𝑉 ∖ {𝑣}) = ∅)) |
| 20 | 19 | imp 406 | . . . . . 6 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → (𝑉 ∖ {𝑣}) = ∅) |
| 21 | 20 | raleqdv 3305 | . . . . 5 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
| 22 | 2, 21 | mpbiri 258 | . . . 4 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) |
| 23 | 3 | uvtxel 29367 | . . . 4 ⊢ (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
| 24 | 1, 22, 23 | sylanbrc 583 | . . 3 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ (UnivVtx‘𝐺)) |
| 25 | 24 | ralrimiva 3132 | . 2 ⊢ ((♯‘𝑉) = 1 → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
| 26 | 3 | cplgr1vlem 29408 | . . 3 ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ V) |
| 27 | 3 | iscplgr 29394 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
| 28 | 26, 27 | syl 17 | . 2 ⊢ ((♯‘𝑉) = 1 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
| 29 | 25, 28 | mpbird 257 | 1 ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∖ cdif 3923 ∅c0 4308 {csn 4601 ‘cfv 6531 (class class class)co 7405 1c1 11130 ♯chash 14348 Vtxcvtx 28975 NeighbVtx cnbgr 29311 UnivVtxcuvtx 29364 ComplGraphccplgr 29388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 df-uvtx 29365 df-cplgr 29390 |
| This theorem is referenced by: cusgr1v 29410 |
| Copyright terms: Public domain | W3C validator |