MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgr1v Structured version   Visualization version   GIF version

Theorem cplgr1v 29409
Description: A graph with one vertex is complete. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
cplgr0v.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cplgr1v ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph)

Proof of Theorem cplgr1v
Dummy variables 𝑣 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → 𝑣𝑉)
2 ral0 4488 . . . . 5 𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣)
3 cplgr0v.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
43fvexi 6890 . . . . . . . . 9 𝑉 ∈ V
5 hash1snb 14437 . . . . . . . . 9 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛}))
64, 5ax-mp 5 . . . . . . . 8 ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛})
7 velsn 4617 . . . . . . . . . . . 12 (𝑣 ∈ {𝑛} ↔ 𝑣 = 𝑛)
8 sneq 4611 . . . . . . . . . . . . . 14 (𝑣 = 𝑛 → {𝑣} = {𝑛})
98difeq2d 4101 . . . . . . . . . . . . 13 (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ({𝑛} ∖ {𝑛}))
10 difid 4351 . . . . . . . . . . . . 13 ({𝑛} ∖ {𝑛}) = ∅
119, 10eqtrdi 2786 . . . . . . . . . . . 12 (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ∅)
127, 11sylbi 217 . . . . . . . . . . 11 (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅)
1312a1i 11 . . . . . . . . . 10 (𝑉 = {𝑛} → (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅))
14 eleq2 2823 . . . . . . . . . 10 (𝑉 = {𝑛} → (𝑣𝑉𝑣 ∈ {𝑛}))
15 difeq1 4094 . . . . . . . . . . 11 (𝑉 = {𝑛} → (𝑉 ∖ {𝑣}) = ({𝑛} ∖ {𝑣}))
1615eqeq1d 2737 . . . . . . . . . 10 (𝑉 = {𝑛} → ((𝑉 ∖ {𝑣}) = ∅ ↔ ({𝑛} ∖ {𝑣}) = ∅))
1713, 14, 163imtr4d 294 . . . . . . . . 9 (𝑉 = {𝑛} → (𝑣𝑉 → (𝑉 ∖ {𝑣}) = ∅))
1817exlimiv 1930 . . . . . . . 8 (∃𝑛 𝑉 = {𝑛} → (𝑣𝑉 → (𝑉 ∖ {𝑣}) = ∅))
196, 18sylbi 217 . . . . . . 7 ((♯‘𝑉) = 1 → (𝑣𝑉 → (𝑉 ∖ {𝑣}) = ∅))
2019imp 406 . . . . . 6 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → (𝑉 ∖ {𝑣}) = ∅)
2120raleqdv 3305 . . . . 5 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
222, 21mpbiri 258 . . . 4 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))
233uvtxel 29367 . . . 4 (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
241, 22, 23sylanbrc 583 . . 3 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → 𝑣 ∈ (UnivVtx‘𝐺))
2524ralrimiva 3132 . 2 ((♯‘𝑉) = 1 → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
263cplgr1vlem 29408 . . 3 ((♯‘𝑉) = 1 → 𝐺 ∈ V)
273iscplgr 29394 . . 3 (𝐺 ∈ V → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
2826, 27syl 17 . 2 ((♯‘𝑉) = 1 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
2925, 28mpbird 257 1 ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3051  Vcvv 3459  cdif 3923  c0 4308  {csn 4601  cfv 6531  (class class class)co 7405  1c1 11130  chash 14348  Vtxcvtx 28975   NeighbVtx cnbgr 29311  UnivVtxcuvtx 29364  ComplGraphccplgr 29388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-uvtx 29365  df-cplgr 29390
This theorem is referenced by:  cusgr1v  29410
  Copyright terms: Public domain W3C validator