MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgr1v Structured version   Visualization version   GIF version

Theorem cplgr1v 29357
Description: A graph with one vertex is complete. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
cplgr0v.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cplgr1v ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph)

Proof of Theorem cplgr1v
Dummy variables 𝑣 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → 𝑣𝑉)
2 ral0 4476 . . . . 5 𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣)
3 cplgr0v.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
43fvexi 6872 . . . . . . . . 9 𝑉 ∈ V
5 hash1snb 14384 . . . . . . . . 9 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛}))
64, 5ax-mp 5 . . . . . . . 8 ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛})
7 velsn 4605 . . . . . . . . . . . 12 (𝑣 ∈ {𝑛} ↔ 𝑣 = 𝑛)
8 sneq 4599 . . . . . . . . . . . . . 14 (𝑣 = 𝑛 → {𝑣} = {𝑛})
98difeq2d 4089 . . . . . . . . . . . . 13 (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ({𝑛} ∖ {𝑛}))
10 difid 4339 . . . . . . . . . . . . 13 ({𝑛} ∖ {𝑛}) = ∅
119, 10eqtrdi 2780 . . . . . . . . . . . 12 (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ∅)
127, 11sylbi 217 . . . . . . . . . . 11 (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅)
1312a1i 11 . . . . . . . . . 10 (𝑉 = {𝑛} → (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅))
14 eleq2 2817 . . . . . . . . . 10 (𝑉 = {𝑛} → (𝑣𝑉𝑣 ∈ {𝑛}))
15 difeq1 4082 . . . . . . . . . . 11 (𝑉 = {𝑛} → (𝑉 ∖ {𝑣}) = ({𝑛} ∖ {𝑣}))
1615eqeq1d 2731 . . . . . . . . . 10 (𝑉 = {𝑛} → ((𝑉 ∖ {𝑣}) = ∅ ↔ ({𝑛} ∖ {𝑣}) = ∅))
1713, 14, 163imtr4d 294 . . . . . . . . 9 (𝑉 = {𝑛} → (𝑣𝑉 → (𝑉 ∖ {𝑣}) = ∅))
1817exlimiv 1930 . . . . . . . 8 (∃𝑛 𝑉 = {𝑛} → (𝑣𝑉 → (𝑉 ∖ {𝑣}) = ∅))
196, 18sylbi 217 . . . . . . 7 ((♯‘𝑉) = 1 → (𝑣𝑉 → (𝑉 ∖ {𝑣}) = ∅))
2019imp 406 . . . . . 6 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → (𝑉 ∖ {𝑣}) = ∅)
2120raleqdv 3299 . . . . 5 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
222, 21mpbiri 258 . . . 4 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))
233uvtxel 29315 . . . 4 (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
241, 22, 23sylanbrc 583 . . 3 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → 𝑣 ∈ (UnivVtx‘𝐺))
2524ralrimiva 3125 . 2 ((♯‘𝑉) = 1 → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
263cplgr1vlem 29356 . . 3 ((♯‘𝑉) = 1 → 𝐺 ∈ V)
273iscplgr 29342 . . 3 (𝐺 ∈ V → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
2826, 27syl 17 . 2 ((♯‘𝑉) = 1 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
2925, 28mpbird 257 1 ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3447  cdif 3911  c0 4296  {csn 4589  cfv 6511  (class class class)co 7387  1c1 11069  chash 14295  Vtxcvtx 28923   NeighbVtx cnbgr 29259  UnivVtxcuvtx 29312  ComplGraphccplgr 29336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296  df-uvtx 29313  df-cplgr 29338
This theorem is referenced by:  cusgr1v  29358
  Copyright terms: Public domain W3C validator