| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cplgr1v | Structured version Visualization version GIF version | ||
| Description: A graph with one vertex is complete. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.) |
| Ref | Expression |
|---|---|
| cplgr0v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| cplgr1v | ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
| 2 | ral0 4513 | . . . . 5 ⊢ ∀𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣) | |
| 3 | cplgr0v.v | . . . . . . . . . 10 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | 3 | fvexi 6920 | . . . . . . . . 9 ⊢ 𝑉 ∈ V |
| 5 | hash1snb 14458 | . . . . . . . . 9 ⊢ (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛})) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . . 8 ⊢ ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛}) |
| 7 | velsn 4642 | . . . . . . . . . . . 12 ⊢ (𝑣 ∈ {𝑛} ↔ 𝑣 = 𝑛) | |
| 8 | sneq 4636 | . . . . . . . . . . . . . 14 ⊢ (𝑣 = 𝑛 → {𝑣} = {𝑛}) | |
| 9 | 8 | difeq2d 4126 | . . . . . . . . . . . . 13 ⊢ (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ({𝑛} ∖ {𝑛})) |
| 10 | difid 4376 | . . . . . . . . . . . . 13 ⊢ ({𝑛} ∖ {𝑛}) = ∅ | |
| 11 | 9, 10 | eqtrdi 2793 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ∅) |
| 12 | 7, 11 | sylbi 217 | . . . . . . . . . . 11 ⊢ (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅) |
| 13 | 12 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑛} → (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅)) |
| 14 | eleq2 2830 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑛} → (𝑣 ∈ 𝑉 ↔ 𝑣 ∈ {𝑛})) | |
| 15 | difeq1 4119 | . . . . . . . . . . 11 ⊢ (𝑉 = {𝑛} → (𝑉 ∖ {𝑣}) = ({𝑛} ∖ {𝑣})) | |
| 16 | 15 | eqeq1d 2739 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑛} → ((𝑉 ∖ {𝑣}) = ∅ ↔ ({𝑛} ∖ {𝑣}) = ∅)) |
| 17 | 13, 14, 16 | 3imtr4d 294 | . . . . . . . . 9 ⊢ (𝑉 = {𝑛} → (𝑣 ∈ 𝑉 → (𝑉 ∖ {𝑣}) = ∅)) |
| 18 | 17 | exlimiv 1930 | . . . . . . . 8 ⊢ (∃𝑛 𝑉 = {𝑛} → (𝑣 ∈ 𝑉 → (𝑉 ∖ {𝑣}) = ∅)) |
| 19 | 6, 18 | sylbi 217 | . . . . . . 7 ⊢ ((♯‘𝑉) = 1 → (𝑣 ∈ 𝑉 → (𝑉 ∖ {𝑣}) = ∅)) |
| 20 | 19 | imp 406 | . . . . . 6 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → (𝑉 ∖ {𝑣}) = ∅) |
| 21 | 20 | raleqdv 3326 | . . . . 5 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
| 22 | 2, 21 | mpbiri 258 | . . . 4 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) |
| 23 | 3 | uvtxel 29405 | . . . 4 ⊢ (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
| 24 | 1, 22, 23 | sylanbrc 583 | . . 3 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ (UnivVtx‘𝐺)) |
| 25 | 24 | ralrimiva 3146 | . 2 ⊢ ((♯‘𝑉) = 1 → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
| 26 | 3 | cplgr1vlem 29446 | . . 3 ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ V) |
| 27 | 3 | iscplgr 29432 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
| 28 | 26, 27 | syl 17 | . 2 ⊢ ((♯‘𝑉) = 1 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
| 29 | 25, 28 | mpbird 257 | 1 ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 ∖ cdif 3948 ∅c0 4333 {csn 4626 ‘cfv 6561 (class class class)co 7431 1c1 11156 ♯chash 14369 Vtxcvtx 29013 NeighbVtx cnbgr 29349 UnivVtxcuvtx 29402 ComplGraphccplgr 29426 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 df-uvtx 29403 df-cplgr 29428 |
| This theorem is referenced by: cusgr1v 29448 |
| Copyright terms: Public domain | W3C validator |