![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cplgr1v | Structured version Visualization version GIF version |
Description: A graph with one vertex is complete. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.) |
Ref | Expression |
---|---|
cplgr0v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
cplgr1v | ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . 4 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
2 | ral0 4512 | . . . . 5 ⊢ ∀𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣) | |
3 | cplgr0v.v | . . . . . . . . . 10 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | fvexi 6905 | . . . . . . . . 9 ⊢ 𝑉 ∈ V |
5 | hash1snb 14378 | . . . . . . . . 9 ⊢ (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛})) | |
6 | 4, 5 | ax-mp 5 | . . . . . . . 8 ⊢ ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛}) |
7 | velsn 4644 | . . . . . . . . . . . 12 ⊢ (𝑣 ∈ {𝑛} ↔ 𝑣 = 𝑛) | |
8 | sneq 4638 | . . . . . . . . . . . . . 14 ⊢ (𝑣 = 𝑛 → {𝑣} = {𝑛}) | |
9 | 8 | difeq2d 4122 | . . . . . . . . . . . . 13 ⊢ (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ({𝑛} ∖ {𝑛})) |
10 | difid 4370 | . . . . . . . . . . . . 13 ⊢ ({𝑛} ∖ {𝑛}) = ∅ | |
11 | 9, 10 | eqtrdi 2788 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ∅) |
12 | 7, 11 | sylbi 216 | . . . . . . . . . . 11 ⊢ (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅) |
13 | 12 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑛} → (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅)) |
14 | eleq2 2822 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑛} → (𝑣 ∈ 𝑉 ↔ 𝑣 ∈ {𝑛})) | |
15 | difeq1 4115 | . . . . . . . . . . 11 ⊢ (𝑉 = {𝑛} → (𝑉 ∖ {𝑣}) = ({𝑛} ∖ {𝑣})) | |
16 | 15 | eqeq1d 2734 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑛} → ((𝑉 ∖ {𝑣}) = ∅ ↔ ({𝑛} ∖ {𝑣}) = ∅)) |
17 | 13, 14, 16 | 3imtr4d 293 | . . . . . . . . 9 ⊢ (𝑉 = {𝑛} → (𝑣 ∈ 𝑉 → (𝑉 ∖ {𝑣}) = ∅)) |
18 | 17 | exlimiv 1933 | . . . . . . . 8 ⊢ (∃𝑛 𝑉 = {𝑛} → (𝑣 ∈ 𝑉 → (𝑉 ∖ {𝑣}) = ∅)) |
19 | 6, 18 | sylbi 216 | . . . . . . 7 ⊢ ((♯‘𝑉) = 1 → (𝑣 ∈ 𝑉 → (𝑉 ∖ {𝑣}) = ∅)) |
20 | 19 | imp 407 | . . . . . 6 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → (𝑉 ∖ {𝑣}) = ∅) |
21 | 20 | raleqdv 3325 | . . . . 5 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
22 | 2, 21 | mpbiri 257 | . . . 4 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) |
23 | 3 | uvtxel 28642 | . . . 4 ⊢ (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
24 | 1, 22, 23 | sylanbrc 583 | . . 3 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ (UnivVtx‘𝐺)) |
25 | 24 | ralrimiva 3146 | . 2 ⊢ ((♯‘𝑉) = 1 → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
26 | 3 | cplgr1vlem 28683 | . . 3 ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ V) |
27 | 3 | iscplgr 28669 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
28 | 26, 27 | syl 17 | . 2 ⊢ ((♯‘𝑉) = 1 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
29 | 25, 28 | mpbird 256 | 1 ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 ∖ cdif 3945 ∅c0 4322 {csn 4628 ‘cfv 6543 (class class class)co 7408 1c1 11110 ♯chash 14289 Vtxcvtx 28253 NeighbVtx cnbgr 28586 UnivVtxcuvtx 28639 ComplGraphccplgr 28663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-oadd 8469 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-dju 9895 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-hash 14290 df-uvtx 28640 df-cplgr 28665 |
This theorem is referenced by: cusgr1v 28685 |
Copyright terms: Public domain | W3C validator |