MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgr1v Structured version   Visualization version   GIF version

Theorem cplgr1v 27211
Description: A graph with one vertex is complete. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
cplgr0v.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cplgr1v ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph)

Proof of Theorem cplgr1v
Dummy variables 𝑣 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . 4 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → 𝑣𝑉)
2 ral0 4437 . . . . 5 𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣)
3 cplgr0v.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
43fvexi 6667 . . . . . . . . 9 𝑉 ∈ V
5 hash1snb 13776 . . . . . . . . 9 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛}))
64, 5ax-mp 5 . . . . . . . 8 ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛})
7 velsn 4564 . . . . . . . . . . . 12 (𝑣 ∈ {𝑛} ↔ 𝑣 = 𝑛)
8 sneq 4558 . . . . . . . . . . . . . 14 (𝑣 = 𝑛 → {𝑣} = {𝑛})
98difeq2d 4083 . . . . . . . . . . . . 13 (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ({𝑛} ∖ {𝑛}))
10 difid 4311 . . . . . . . . . . . . 13 ({𝑛} ∖ {𝑛}) = ∅
119, 10syl6eq 2875 . . . . . . . . . . . 12 (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ∅)
127, 11sylbi 220 . . . . . . . . . . 11 (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅)
1312a1i 11 . . . . . . . . . 10 (𝑉 = {𝑛} → (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅))
14 eleq2 2904 . . . . . . . . . 10 (𝑉 = {𝑛} → (𝑣𝑉𝑣 ∈ {𝑛}))
15 difeq1 4076 . . . . . . . . . . 11 (𝑉 = {𝑛} → (𝑉 ∖ {𝑣}) = ({𝑛} ∖ {𝑣}))
1615eqeq1d 2826 . . . . . . . . . 10 (𝑉 = {𝑛} → ((𝑉 ∖ {𝑣}) = ∅ ↔ ({𝑛} ∖ {𝑣}) = ∅))
1713, 14, 163imtr4d 297 . . . . . . . . 9 (𝑉 = {𝑛} → (𝑣𝑉 → (𝑉 ∖ {𝑣}) = ∅))
1817exlimiv 1932 . . . . . . . 8 (∃𝑛 𝑉 = {𝑛} → (𝑣𝑉 → (𝑉 ∖ {𝑣}) = ∅))
196, 18sylbi 220 . . . . . . 7 ((♯‘𝑉) = 1 → (𝑣𝑉 → (𝑉 ∖ {𝑣}) = ∅))
2019imp 410 . . . . . 6 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → (𝑉 ∖ {𝑣}) = ∅)
2120raleqdv 3402 . . . . 5 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
222, 21mpbiri 261 . . . 4 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))
233uvtxel 27169 . . . 4 (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
241, 22, 23sylanbrc 586 . . 3 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → 𝑣 ∈ (UnivVtx‘𝐺))
2524ralrimiva 3176 . 2 ((♯‘𝑉) = 1 → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
263cplgr1vlem 27210 . . 3 ((♯‘𝑉) = 1 → 𝐺 ∈ V)
273iscplgr 27196 . . 3 (𝐺 ∈ V → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
2826, 27syl 17 . 2 ((♯‘𝑉) = 1 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
2925, 28mpbird 260 1 ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2115  wral 3132  Vcvv 3479  cdif 3915  c0 4274  {csn 4548  cfv 6338  (class class class)co 7140  1c1 10525  chash 13686  Vtxcvtx 26780   NeighbVtx cnbgr 27113  UnivVtxcuvtx 27166  ComplGraphccplgr 27190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-int 4860  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7674  df-2nd 7675  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-dju 9316  df-card 9354  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687  df-uvtx 27167  df-cplgr 27192
This theorem is referenced by:  cusgr1v  27212
  Copyright terms: Public domain W3C validator