![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cplgr1v | Structured version Visualization version GIF version |
Description: A graph with one vertex is complete. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.) |
Ref | Expression |
---|---|
cplgr0v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
cplgr1v | ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . . 4 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
2 | ral0 4474 | . . . . 5 ⊢ ∀𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣) | |
3 | cplgr0v.v | . . . . . . . . . 10 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | fvexi 6860 | . . . . . . . . 9 ⊢ 𝑉 ∈ V |
5 | hash1snb 14328 | . . . . . . . . 9 ⊢ (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛})) | |
6 | 4, 5 | ax-mp 5 | . . . . . . . 8 ⊢ ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛}) |
7 | velsn 4606 | . . . . . . . . . . . 12 ⊢ (𝑣 ∈ {𝑛} ↔ 𝑣 = 𝑛) | |
8 | sneq 4600 | . . . . . . . . . . . . . 14 ⊢ (𝑣 = 𝑛 → {𝑣} = {𝑛}) | |
9 | 8 | difeq2d 4086 | . . . . . . . . . . . . 13 ⊢ (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ({𝑛} ∖ {𝑛})) |
10 | difid 4334 | . . . . . . . . . . . . 13 ⊢ ({𝑛} ∖ {𝑛}) = ∅ | |
11 | 9, 10 | eqtrdi 2789 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ∅) |
12 | 7, 11 | sylbi 216 | . . . . . . . . . . 11 ⊢ (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅) |
13 | 12 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑛} → (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅)) |
14 | eleq2 2823 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑛} → (𝑣 ∈ 𝑉 ↔ 𝑣 ∈ {𝑛})) | |
15 | difeq1 4079 | . . . . . . . . . . 11 ⊢ (𝑉 = {𝑛} → (𝑉 ∖ {𝑣}) = ({𝑛} ∖ {𝑣})) | |
16 | 15 | eqeq1d 2735 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑛} → ((𝑉 ∖ {𝑣}) = ∅ ↔ ({𝑛} ∖ {𝑣}) = ∅)) |
17 | 13, 14, 16 | 3imtr4d 294 | . . . . . . . . 9 ⊢ (𝑉 = {𝑛} → (𝑣 ∈ 𝑉 → (𝑉 ∖ {𝑣}) = ∅)) |
18 | 17 | exlimiv 1934 | . . . . . . . 8 ⊢ (∃𝑛 𝑉 = {𝑛} → (𝑣 ∈ 𝑉 → (𝑉 ∖ {𝑣}) = ∅)) |
19 | 6, 18 | sylbi 216 | . . . . . . 7 ⊢ ((♯‘𝑉) = 1 → (𝑣 ∈ 𝑉 → (𝑉 ∖ {𝑣}) = ∅)) |
20 | 19 | imp 408 | . . . . . 6 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → (𝑉 ∖ {𝑣}) = ∅) |
21 | 20 | raleqdv 3312 | . . . . 5 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
22 | 2, 21 | mpbiri 258 | . . . 4 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) |
23 | 3 | uvtxel 28385 | . . . 4 ⊢ (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
24 | 1, 22, 23 | sylanbrc 584 | . . 3 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ (UnivVtx‘𝐺)) |
25 | 24 | ralrimiva 3140 | . 2 ⊢ ((♯‘𝑉) = 1 → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
26 | 3 | cplgr1vlem 28426 | . . 3 ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ V) |
27 | 3 | iscplgr 28412 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
28 | 26, 27 | syl 17 | . 2 ⊢ ((♯‘𝑉) = 1 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
29 | 25, 28 | mpbird 257 | 1 ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∀wral 3061 Vcvv 3447 ∖ cdif 3911 ∅c0 4286 {csn 4590 ‘cfv 6500 (class class class)co 7361 1c1 11060 ♯chash 14239 Vtxcvtx 27996 NeighbVtx cnbgr 28329 UnivVtxcuvtx 28382 ComplGraphccplgr 28406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-oadd 8420 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-dju 9845 df-card 9883 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-n0 12422 df-z 12508 df-uz 12772 df-fz 13434 df-hash 14240 df-uvtx 28383 df-cplgr 28408 |
This theorem is referenced by: cusgr1v 28428 |
Copyright terms: Public domain | W3C validator |