![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cplgr1v | Structured version Visualization version GIF version |
Description: A graph with one vertex is complete. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.) |
Ref | Expression |
---|---|
cplgr0v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
cplgr1v | ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
2 | ral0 4513 | . . . . 5 ⊢ ∀𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣) | |
3 | cplgr0v.v | . . . . . . . . . 10 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | fvexi 6911 | . . . . . . . . 9 ⊢ 𝑉 ∈ V |
5 | hash1snb 14410 | . . . . . . . . 9 ⊢ (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛})) | |
6 | 4, 5 | ax-mp 5 | . . . . . . . 8 ⊢ ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛}) |
7 | velsn 4645 | . . . . . . . . . . . 12 ⊢ (𝑣 ∈ {𝑛} ↔ 𝑣 = 𝑛) | |
8 | sneq 4639 | . . . . . . . . . . . . . 14 ⊢ (𝑣 = 𝑛 → {𝑣} = {𝑛}) | |
9 | 8 | difeq2d 4120 | . . . . . . . . . . . . 13 ⊢ (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ({𝑛} ∖ {𝑛})) |
10 | difid 4371 | . . . . . . . . . . . . 13 ⊢ ({𝑛} ∖ {𝑛}) = ∅ | |
11 | 9, 10 | eqtrdi 2784 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ∅) |
12 | 7, 11 | sylbi 216 | . . . . . . . . . . 11 ⊢ (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅) |
13 | 12 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑛} → (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅)) |
14 | eleq2 2818 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑛} → (𝑣 ∈ 𝑉 ↔ 𝑣 ∈ {𝑛})) | |
15 | difeq1 4113 | . . . . . . . . . . 11 ⊢ (𝑉 = {𝑛} → (𝑉 ∖ {𝑣}) = ({𝑛} ∖ {𝑣})) | |
16 | 15 | eqeq1d 2730 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑛} → ((𝑉 ∖ {𝑣}) = ∅ ↔ ({𝑛} ∖ {𝑣}) = ∅)) |
17 | 13, 14, 16 | 3imtr4d 294 | . . . . . . . . 9 ⊢ (𝑉 = {𝑛} → (𝑣 ∈ 𝑉 → (𝑉 ∖ {𝑣}) = ∅)) |
18 | 17 | exlimiv 1926 | . . . . . . . 8 ⊢ (∃𝑛 𝑉 = {𝑛} → (𝑣 ∈ 𝑉 → (𝑉 ∖ {𝑣}) = ∅)) |
19 | 6, 18 | sylbi 216 | . . . . . . 7 ⊢ ((♯‘𝑉) = 1 → (𝑣 ∈ 𝑉 → (𝑉 ∖ {𝑣}) = ∅)) |
20 | 19 | imp 406 | . . . . . 6 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → (𝑉 ∖ {𝑣}) = ∅) |
21 | 20 | raleqdv 3322 | . . . . 5 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
22 | 2, 21 | mpbiri 258 | . . . 4 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) |
23 | 3 | uvtxel 29200 | . . . 4 ⊢ (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
24 | 1, 22, 23 | sylanbrc 582 | . . 3 ⊢ (((♯‘𝑉) = 1 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ (UnivVtx‘𝐺)) |
25 | 24 | ralrimiva 3143 | . 2 ⊢ ((♯‘𝑉) = 1 → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
26 | 3 | cplgr1vlem 29241 | . . 3 ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ V) |
27 | 3 | iscplgr 29227 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
28 | 26, 27 | syl 17 | . 2 ⊢ ((♯‘𝑉) = 1 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
29 | 25, 28 | mpbird 257 | 1 ⊢ ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∀wral 3058 Vcvv 3471 ∖ cdif 3944 ∅c0 4323 {csn 4629 ‘cfv 6548 (class class class)co 7420 1c1 11139 ♯chash 14321 Vtxcvtx 28808 NeighbVtx cnbgr 29144 UnivVtxcuvtx 29197 ComplGraphccplgr 29221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-oadd 8490 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-hash 14322 df-uvtx 29198 df-cplgr 29223 |
This theorem is referenced by: cusgr1v 29243 |
Copyright terms: Public domain | W3C validator |