MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgr1v Structured version   Visualization version   GIF version

Theorem cplgr1v 27220
Description: A graph with one vertex is complete. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
cplgr0v.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cplgr1v ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph)

Proof of Theorem cplgr1v
Dummy variables 𝑣 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . 4 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → 𝑣𝑉)
2 ral0 4414 . . . . 5 𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣)
3 cplgr0v.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
43fvexi 6659 . . . . . . . . 9 𝑉 ∈ V
5 hash1snb 13776 . . . . . . . . 9 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛}))
64, 5ax-mp 5 . . . . . . . 8 ((♯‘𝑉) = 1 ↔ ∃𝑛 𝑉 = {𝑛})
7 velsn 4541 . . . . . . . . . . . 12 (𝑣 ∈ {𝑛} ↔ 𝑣 = 𝑛)
8 sneq 4535 . . . . . . . . . . . . . 14 (𝑣 = 𝑛 → {𝑣} = {𝑛})
98difeq2d 4050 . . . . . . . . . . . . 13 (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ({𝑛} ∖ {𝑛}))
10 difid 4284 . . . . . . . . . . . . 13 ({𝑛} ∖ {𝑛}) = ∅
119, 10eqtrdi 2849 . . . . . . . . . . . 12 (𝑣 = 𝑛 → ({𝑛} ∖ {𝑣}) = ∅)
127, 11sylbi 220 . . . . . . . . . . 11 (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅)
1312a1i 11 . . . . . . . . . 10 (𝑉 = {𝑛} → (𝑣 ∈ {𝑛} → ({𝑛} ∖ {𝑣}) = ∅))
14 eleq2 2878 . . . . . . . . . 10 (𝑉 = {𝑛} → (𝑣𝑉𝑣 ∈ {𝑛}))
15 difeq1 4043 . . . . . . . . . . 11 (𝑉 = {𝑛} → (𝑉 ∖ {𝑣}) = ({𝑛} ∖ {𝑣}))
1615eqeq1d 2800 . . . . . . . . . 10 (𝑉 = {𝑛} → ((𝑉 ∖ {𝑣}) = ∅ ↔ ({𝑛} ∖ {𝑣}) = ∅))
1713, 14, 163imtr4d 297 . . . . . . . . 9 (𝑉 = {𝑛} → (𝑣𝑉 → (𝑉 ∖ {𝑣}) = ∅))
1817exlimiv 1931 . . . . . . . 8 (∃𝑛 𝑉 = {𝑛} → (𝑣𝑉 → (𝑉 ∖ {𝑣}) = ∅))
196, 18sylbi 220 . . . . . . 7 ((♯‘𝑉) = 1 → (𝑣𝑉 → (𝑉 ∖ {𝑣}) = ∅))
2019imp 410 . . . . . 6 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → (𝑉 ∖ {𝑣}) = ∅)
2120raleqdv 3364 . . . . 5 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ∅ 𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
222, 21mpbiri 261 . . . 4 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))
233uvtxel 27178 . . . 4 (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
241, 22, 23sylanbrc 586 . . 3 (((♯‘𝑉) = 1 ∧ 𝑣𝑉) → 𝑣 ∈ (UnivVtx‘𝐺))
2524ralrimiva 3149 . 2 ((♯‘𝑉) = 1 → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
263cplgr1vlem 27219 . . 3 ((♯‘𝑉) = 1 → 𝐺 ∈ V)
273iscplgr 27205 . . 3 (𝐺 ∈ V → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
2826, 27syl 17 . 2 ((♯‘𝑉) = 1 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
2925, 28mpbird 260 1 ((♯‘𝑉) = 1 → 𝐺 ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wral 3106  Vcvv 3441  cdif 3878  c0 4243  {csn 4525  cfv 6324  (class class class)co 7135  1c1 10527  chash 13686  Vtxcvtx 26789   NeighbVtx cnbgr 27122  UnivVtxcuvtx 27175  ComplGraphccplgr 27199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687  df-uvtx 27176  df-cplgr 27201
This theorem is referenced by:  cusgr1v  27221
  Copyright terms: Public domain W3C validator