MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtx2vtx1edg Structured version   Visualization version   GIF version

Theorem uvtx2vtx1edg 29397
Description: If a graph has two vertices, and there is an edge between the vertices, then each vertex is universal. (Contributed by AV, 1-Nov-2020.) (Revised by AV, 25-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.)
Hypotheses
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
isuvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uvtx2vtx1edg (((♯‘𝑉) = 2 ∧ 𝑉𝐸) → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑣,𝐸

Proof of Theorem uvtx2vtx1edg
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 uvtxel.v . . 3 𝑉 = (Vtx‘𝐺)
2 isuvtx.e . . 3 𝐸 = (Edg‘𝐺)
31, 2nbgr2vtx1edg 29349 . 2 (((♯‘𝑉) = 2 ∧ 𝑉𝐸) → ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))
41uvtxel 29387 . . . . 5 (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
54a1i 11 . . . 4 (((♯‘𝑉) = 2 ∧ 𝑉𝐸) → (𝑣 ∈ (UnivVtx‘𝐺) ↔ (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))))
65baibd 539 . . 3 ((((♯‘𝑉) = 2 ∧ 𝑉𝐸) ∧ 𝑣𝑉) → (𝑣 ∈ (UnivVtx‘𝐺) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
76ralbidva 3154 . 2 (((♯‘𝑉) = 2 ∧ 𝑉𝐸) → (∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺) ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
83, 7mpbird 257 1 (((♯‘𝑉) = 2 ∧ 𝑉𝐸) → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  cdif 3895  {csn 4577  cfv 6489  (class class class)co 7355  2c2 12191  chash 14244  Vtxcvtx 28995  Edgcedg 29046   NeighbVtx cnbgr 29331  UnivVtxcuvtx 29384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-hash 14245  df-nbgr 29332  df-uvtx 29385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator