Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzsscn2 | Structured version Visualization version GIF version |
Description: An upper set of integers is a subset of the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
uzsscn2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
uzsscn2 | ⊢ 𝑍 ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzsscn2.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | uzsscn 43403 | . 2 ⊢ (ℤ≥‘𝑀) ⊆ ℂ | |
3 | 1, 2 | eqsstri 3969 | 1 ⊢ 𝑍 ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊆ wss 3901 ‘cfv 6483 ℂcc 10974 ℤ≥cuz 12687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-cnex 11032 ax-resscn 11033 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-fv 6491 df-ov 7344 df-neg 11313 df-z 12425 df-uz 12688 |
This theorem is referenced by: xlimbr 43756 fuzxrpmcn 43757 xlimmnfvlem2 43762 xlimpnfvlem2 43766 |
Copyright terms: Public domain | W3C validator |