Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzsscn2 Structured version   Visualization version   GIF version

Theorem uzsscn2 45382
Description: An upper set of integers is a subset of the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypothesis
Ref Expression
uzsscn2.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzsscn2 𝑍 ⊆ ℂ

Proof of Theorem uzsscn2
StepHypRef Expression
1 uzsscn2.1 . 2 𝑍 = (ℤ𝑀)
2 uzsscn 45380 . 2 (ℤ𝑀) ⊆ ℂ
31, 2eqsstri 4043 1 𝑍 ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wss 3976  cfv 6568  cc 11176  cuz 12897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-cnex 11234  ax-resscn 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-fv 6576  df-ov 7446  df-neg 11517  df-z 12634  df-uz 12898
This theorem is referenced by:  xlimbr  45737  fuzxrpmcn  45738  xlimmnfvlem2  45743  xlimpnfvlem2  45747
  Copyright terms: Public domain W3C validator