Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzsscn2 Structured version   Visualization version   GIF version

Theorem uzsscn2 43405
Description: An upper set of integers is a subset of the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypothesis
Ref Expression
uzsscn2.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzsscn2 𝑍 ⊆ ℂ

Proof of Theorem uzsscn2
StepHypRef Expression
1 uzsscn2.1 . 2 𝑍 = (ℤ𝑀)
2 uzsscn 43403 . 2 (ℤ𝑀) ⊆ ℂ
31, 2eqsstri 3969 1 𝑍 ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3901  cfv 6483  cc 10974  cuz 12687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376  ax-cnex 11032  ax-resscn 11033
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-fv 6491  df-ov 7344  df-neg 11313  df-z 12425  df-uz 12688
This theorem is referenced by:  xlimbr  43756  fuzxrpmcn  43757  xlimmnfvlem2  43762  xlimpnfvlem2  43766
  Copyright terms: Public domain W3C validator