Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzsscn2 Structured version   Visualization version   GIF version

Theorem uzsscn2 45461
Description: An upper set of integers is a subset of the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypothesis
Ref Expression
uzsscn2.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzsscn2 𝑍 ⊆ ℂ

Proof of Theorem uzsscn2
StepHypRef Expression
1 uzsscn2.1 . 2 𝑍 = (ℤ𝑀)
2 uzsscn 45459 . 2 (ℤ𝑀) ⊆ ℂ
31, 2eqsstri 4029 1 𝑍 ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3950  cfv 6559  cc 11149  cuz 12874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430  ax-cnex 11207  ax-resscn 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-fv 6567  df-ov 7432  df-neg 11491  df-z 12610  df-uz 12875
This theorem is referenced by:  xlimbr  45815  fuzxrpmcn  45816  xlimmnfvlem2  45821  xlimpnfvlem2  45825
  Copyright terms: Public domain W3C validator