Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  absimnre Structured version   Visualization version   GIF version

Theorem absimnre 45460
Description: The absolute value of the imaginary part of a non-real, complex number, is strictly positive. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
absimnre.1 (𝜑𝐴 ∈ ℂ)
absimnre.2 (𝜑 → ¬ 𝐴 ∈ ℝ)
Assertion
Ref Expression
absimnre (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+)

Proof of Theorem absimnre
StepHypRef Expression
1 absimnre.1 . . . 4 (𝜑𝐴 ∈ ℂ)
21imcld 15230 . . 3 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
32recnd 11285 . 2 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
4 absimnre.2 . . . 4 (𝜑 → ¬ 𝐴 ∈ ℝ)
5 reim0b 15154 . . . . 5 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
61, 5syl 17 . . . 4 (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
74, 6mtbid 324 . . 3 (𝜑 → ¬ (ℑ‘𝐴) = 0)
87neqned 2946 . 2 (𝜑 → (ℑ‘𝐴) ≠ 0)
93, 8absrpcld 15483 1 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2108  cfv 6559  cc 11149  cr 11150  0cc0 11151  +crp 13030  cim 15133  abscabs 15269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228  ax-pre-sup 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-er 8741  df-en 8982  df-dom 8983  df-sdom 8984  df-sup 9478  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-div 11917  df-nn 12263  df-2 12325  df-3 12326  df-n0 12523  df-z 12610  df-uz 12875  df-rp 13031  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271
This theorem is referenced by:  cnrefiisplem  45817
  Copyright terms: Public domain W3C validator