MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcdi Structured version   Visualization version   GIF version

Theorem vcdi 30467
Description: Distributive law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vcdi ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))

Proof of Theorem vcdi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vciOLD.1 . . . . . 6 𝐺 = (1st𝑊)
2 vciOLD.2 . . . . . 6 𝑆 = (2nd𝑊)
3 vciOLD.3 . . . . . 6 𝑋 = ran 𝐺
41, 2, 3vciOLD 30463 . . . . 5 (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5 simpl 482 . . . . . . . . 9 ((∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
65ralimi 3066 . . . . . . . 8 (∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
76adantl 481 . . . . . . 7 (((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
87ralimi 3066 . . . . . 6 (∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
983ad2ant3 1135 . . . . 5 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
104, 9syl 17 . . . 4 (𝑊 ∈ CVecOLD → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
11 oveq1 7376 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐺𝑧) = (𝐵𝐺𝑧))
1211oveq2d 7385 . . . . . 6 (𝑥 = 𝐵 → (𝑦𝑆(𝑥𝐺𝑧)) = (𝑦𝑆(𝐵𝐺𝑧)))
13 oveq2 7377 . . . . . . 7 (𝑥 = 𝐵 → (𝑦𝑆𝑥) = (𝑦𝑆𝐵))
1413oveq1d 7384 . . . . . 6 (𝑥 = 𝐵 → ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) = ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧)))
1512, 14eqeq12d 2745 . . . . 5 (𝑥 = 𝐵 → ((𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ↔ (𝑦𝑆(𝐵𝐺𝑧)) = ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧))))
16 oveq1 7376 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑆(𝐵𝐺𝑧)) = (𝐴𝑆(𝐵𝐺𝑧)))
17 oveq1 7376 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑆𝐵) = (𝐴𝑆𝐵))
18 oveq1 7376 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑆𝑧) = (𝐴𝑆𝑧))
1917, 18oveq12d 7387 . . . . . 6 (𝑦 = 𝐴 → ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧)))
2016, 19eqeq12d 2745 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝑆(𝐵𝐺𝑧)) = ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧)) ↔ (𝐴𝑆(𝐵𝐺𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧))))
21 oveq2 7377 . . . . . . 7 (𝑧 = 𝐶 → (𝐵𝐺𝑧) = (𝐵𝐺𝐶))
2221oveq2d 7385 . . . . . 6 (𝑧 = 𝐶 → (𝐴𝑆(𝐵𝐺𝑧)) = (𝐴𝑆(𝐵𝐺𝐶)))
23 oveq2 7377 . . . . . . 7 (𝑧 = 𝐶 → (𝐴𝑆𝑧) = (𝐴𝑆𝐶))
2423oveq2d 7385 . . . . . 6 (𝑧 = 𝐶 → ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))
2522, 24eqeq12d 2745 . . . . 5 (𝑧 = 𝐶 → ((𝐴𝑆(𝐵𝐺𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧)) ↔ (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
2615, 20, 25rspc3v 3601 . . . 4 ((𝐵𝑋𝐴 ∈ ℂ ∧ 𝐶𝑋) → (∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
2710, 26syl5 34 . . 3 ((𝐵𝑋𝐴 ∈ ℂ ∧ 𝐶𝑋) → (𝑊 ∈ CVecOLD → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
28273com12 1123 . 2 ((𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋) → (𝑊 ∈ CVecOLD → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
2928impcom 407 1 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   × cxp 5629  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  cc 11042  1c1 11045   + caddc 11047   · cmul 11049  AbelOpcablo 30446  CVecOLDcvc 30460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-1st 7947  df-2nd 7948  df-vc 30461
This theorem is referenced by:  nvdi  30532
  Copyright terms: Public domain W3C validator