MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcdi Structured version   Visualization version   GIF version

Theorem vcdi 30566
Description: Distributive law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vcdi ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))

Proof of Theorem vcdi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vciOLD.1 . . . . . 6 𝐺 = (1st𝑊)
2 vciOLD.2 . . . . . 6 𝑆 = (2nd𝑊)
3 vciOLD.3 . . . . . 6 𝑋 = ran 𝐺
41, 2, 3vciOLD 30562 . . . . 5 (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5 simpl 482 . . . . . . . . 9 ((∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
65ralimi 3070 . . . . . . . 8 (∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
76adantl 481 . . . . . . 7 (((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
87ralimi 3070 . . . . . 6 (∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
983ad2ant3 1135 . . . . 5 ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
104, 9syl 17 . . . 4 (𝑊 ∈ CVecOLD → ∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
11 oveq1 7362 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐺𝑧) = (𝐵𝐺𝑧))
1211oveq2d 7371 . . . . . 6 (𝑥 = 𝐵 → (𝑦𝑆(𝑥𝐺𝑧)) = (𝑦𝑆(𝐵𝐺𝑧)))
13 oveq2 7363 . . . . . . 7 (𝑥 = 𝐵 → (𝑦𝑆𝑥) = (𝑦𝑆𝐵))
1413oveq1d 7370 . . . . . 6 (𝑥 = 𝐵 → ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) = ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧)))
1512, 14eqeq12d 2749 . . . . 5 (𝑥 = 𝐵 → ((𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ↔ (𝑦𝑆(𝐵𝐺𝑧)) = ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧))))
16 oveq1 7362 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑆(𝐵𝐺𝑧)) = (𝐴𝑆(𝐵𝐺𝑧)))
17 oveq1 7362 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑆𝐵) = (𝐴𝑆𝐵))
18 oveq1 7362 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑆𝑧) = (𝐴𝑆𝑧))
1917, 18oveq12d 7373 . . . . . 6 (𝑦 = 𝐴 → ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧)))
2016, 19eqeq12d 2749 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝑆(𝐵𝐺𝑧)) = ((𝑦𝑆𝐵)𝐺(𝑦𝑆𝑧)) ↔ (𝐴𝑆(𝐵𝐺𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧))))
21 oveq2 7363 . . . . . . 7 (𝑧 = 𝐶 → (𝐵𝐺𝑧) = (𝐵𝐺𝐶))
2221oveq2d 7371 . . . . . 6 (𝑧 = 𝐶 → (𝐴𝑆(𝐵𝐺𝑧)) = (𝐴𝑆(𝐵𝐺𝐶)))
23 oveq2 7363 . . . . . . 7 (𝑧 = 𝐶 → (𝐴𝑆𝑧) = (𝐴𝑆𝐶))
2423oveq2d 7371 . . . . . 6 (𝑧 = 𝐶 → ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))
2522, 24eqeq12d 2749 . . . . 5 (𝑧 = 𝐶 → ((𝐴𝑆(𝐵𝐺𝑧)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝑧)) ↔ (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
2615, 20, 25rspc3v 3589 . . . 4 ((𝐵𝑋𝐴 ∈ ℂ ∧ 𝐶𝑋) → (∀𝑥𝑋𝑦 ∈ ℂ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
2710, 26syl5 34 . . 3 ((𝐵𝑋𝐴 ∈ ℂ ∧ 𝐶𝑋) → (𝑊 ∈ CVecOLD → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
28273com12 1123 . 2 ((𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋) → (𝑊 ∈ CVecOLD → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))))
2928impcom 407 1 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048   × cxp 5619  ran crn 5622  wf 6485  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  cc 11015  1c1 11018   + caddc 11020   · cmul 11022  AbelOpcablo 30545  CVecOLDcvc 30559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-1st 7930  df-2nd 7931  df-vc 30560
This theorem is referenced by:  nvdi  30631
  Copyright terms: Public domain W3C validator