| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | vciOLD.1 | . . . . . 6
⊢ 𝐺 = (1st ‘𝑊) | 
| 2 |  | vciOLD.2 | . . . . . 6
⊢ 𝑆 = (2nd ‘𝑊) | 
| 3 |  | vciOLD.3 | . . . . . 6
⊢ 𝑋 = ran 𝐺 | 
| 4 | 1, 2, 3 | vciOLD 30580 | . . . . 5
⊢ (𝑊 ∈ CVecOLD
→ (𝐺 ∈ AbelOp
∧ 𝑆:(ℂ ×
𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) | 
| 5 |  | simpl 482 | . . . . . . . . . . 11
⊢ ((((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) → ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥))) | 
| 6 | 5 | ralimi 3083 | . . . . . . . . . 10
⊢
(∀𝑧 ∈
ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) → ∀𝑧 ∈ ℂ ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥))) | 
| 7 | 6 | adantl 481 | . . . . . . . . 9
⊢
((∀𝑧 ∈
𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑧 ∈ ℂ ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥))) | 
| 8 | 7 | ralimi 3083 | . . . . . . . 8
⊢
(∀𝑦 ∈
ℂ (∀𝑧 ∈
𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) → ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥))) | 
| 9 | 8 | adantl 481 | . . . . . . 7
⊢ (((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥))) | 
| 10 | 9 | ralimi 3083 | . . . . . 6
⊢
(∀𝑥 ∈
𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥))) | 
| 11 | 10 | 3ad2ant3 1136 | . . . . 5
⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥))) | 
| 12 | 4, 11 | syl 17 | . . . 4
⊢ (𝑊 ∈ CVecOLD
→ ∀𝑥 ∈
𝑋 ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥))) | 
| 13 |  | oveq2 7439 | . . . . . 6
⊢ (𝑥 = 𝐶 → ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦 + 𝑧)𝑆𝐶)) | 
| 14 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑥 = 𝐶 → (𝑦𝑆𝑥) = (𝑦𝑆𝐶)) | 
| 15 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑥 = 𝐶 → (𝑧𝑆𝑥) = (𝑧𝑆𝐶)) | 
| 16 | 14, 15 | oveq12d 7449 | . . . . . 6
⊢ (𝑥 = 𝐶 → ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) = ((𝑦𝑆𝐶)𝐺(𝑧𝑆𝐶))) | 
| 17 | 13, 16 | eqeq12d 2753 | . . . . 5
⊢ (𝑥 = 𝐶 → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ↔ ((𝑦 + 𝑧)𝑆𝐶) = ((𝑦𝑆𝐶)𝐺(𝑧𝑆𝐶)))) | 
| 18 |  | oveq1 7438 | . . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑦 + 𝑧) = (𝐴 + 𝑧)) | 
| 19 | 18 | oveq1d 7446 | . . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑦 + 𝑧)𝑆𝐶) = ((𝐴 + 𝑧)𝑆𝐶)) | 
| 20 |  | oveq1 7438 | . . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑦𝑆𝐶) = (𝐴𝑆𝐶)) | 
| 21 | 20 | oveq1d 7446 | . . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑦𝑆𝐶)𝐺(𝑧𝑆𝐶)) = ((𝐴𝑆𝐶)𝐺(𝑧𝑆𝐶))) | 
| 22 | 19, 21 | eqeq12d 2753 | . . . . 5
⊢ (𝑦 = 𝐴 → (((𝑦 + 𝑧)𝑆𝐶) = ((𝑦𝑆𝐶)𝐺(𝑧𝑆𝐶)) ↔ ((𝐴 + 𝑧)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝑧𝑆𝐶)))) | 
| 23 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑧 = 𝐵 → (𝐴 + 𝑧) = (𝐴 + 𝐵)) | 
| 24 | 23 | oveq1d 7446 | . . . . . 6
⊢ (𝑧 = 𝐵 → ((𝐴 + 𝑧)𝑆𝐶) = ((𝐴 + 𝐵)𝑆𝐶)) | 
| 25 |  | oveq1 7438 | . . . . . . 7
⊢ (𝑧 = 𝐵 → (𝑧𝑆𝐶) = (𝐵𝑆𝐶)) | 
| 26 | 25 | oveq2d 7447 | . . . . . 6
⊢ (𝑧 = 𝐵 → ((𝐴𝑆𝐶)𝐺(𝑧𝑆𝐶)) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶))) | 
| 27 | 24, 26 | eqeq12d 2753 | . . . . 5
⊢ (𝑧 = 𝐵 → (((𝐴 + 𝑧)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝑧𝑆𝐶)) ↔ ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))) | 
| 28 | 17, 22, 27 | rspc3v 3638 | . . . 4
⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ ∀𝑧 ∈ ℂ ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))) | 
| 29 | 12, 28 | syl5 34 | . . 3
⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑊 ∈ CVecOLD → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))) | 
| 30 | 29 | 3coml 1128 | . 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋) → (𝑊 ∈ CVecOLD → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))) | 
| 31 | 30 | impcom 407 | 1
⊢ ((𝑊 ∈ CVecOLD ∧
(𝐴 ∈ ℂ ∧
𝐵 ∈ ℂ ∧
𝐶 ∈ 𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶))) |